
Well Ordering, Division, and the Euclidean Algorithm

Let us explore some basic properties of the integers: Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }. We can add,
subtract, and multiply integers, but that is not all. One important property of the set of integers is its
well ordering principle.

Definition: [Well Ordering Principle (WOP)] Let X be a non-empty subset of Z such that X is
bounded below (there exists some M ∈ Z such that x ≥M for all x ∈ X). Then X has a minimal element
– that is – there exists some m ∈ X such that m ≤ x for all x ∈ X. When such an element exists, it is
unique. We denote this element by min(X) = m.

Notice that if X is bounded below by M , then −M + X = {−M + x | x ∈ X} is bounded below by 0.
If m is the minimum of −M +X then m+M is the minimum of X. Likewise, if m is the minimum of X,
then m−M is the minimum of −M + X. This means that if we wish to establish the WOP, we can just
focus on sets of non-negative integers and the general case will follow.

It turns out that the WOP is logically equivalent to the Principle of Mathematical Induction (PMI).

Theorem: PMI =⇒ WOP

proof: Let X be a non-empty set of non-negative integers. For sake of contradiction, suppose that X
has no minimum. Let S = {n ∈ Z≥0 | n is a lower bound for X}. Notice that 0 ∈ S since X is clearly
bounded below by 0.

Our inductive hypothesis is that for some n ≥ 0 we have n ∈ S. Well, this means that n is a lower
bound. Thus n ≤ x for all x ∈ X. Notice that n + 1 must be a lower bound as well. If not, x0 < n + 1
for some x0 ∈ X. But n ≤ x0. Thus n = x0. So x0 is a lower bound and x0 ∈ X. This means x0 is the
minimum of X (contradiction since we assumed X has no minimum). Thus n + 1 must also be a lower
bound, so n + 1 ∈ S.

So we have shown that 0 ∈ S and if n ≥ 0 and n ∈ S, then n+1 ∈ S. By induction we can conclude that
S = Z≥0. This means that any element of X must be greater than all non-negative integers! Therefore, X
must be empty (contradiction since we assumed X was non-empty).

We have reached our final contradiction, so we must conclude that X does have a minimum. �

Theorem: WOP =⇒ PMI

proof: Let us suppose that ϕ(n) is some statement such that ϕ(0) is true and whenever n ≥ 0 and ϕ(n)
holds, ϕ(n + 1) also holds. We wish to show that ϕ(n) holds for all n ≥ 0.

Consider X = {m ∈ Z≥0 | ϕ(m) does not hold }. If ϕ(n) is true for all n ≥ 0, then X is empty. For
sake of contradiction, let us assume that X is non-empty. So by the WOP, X must have a minimal element,
say m ∈ X. Now m 6= 0 since 0 6∈ X because ϕ(0) holds. Therefore, m > 0 and so m = n + 1 for some
n ≥ 0. Next, n 6∈ X (otherwise, n ∈ X so m isn’t the minimum since n < n + 1 = m). Thus since n 6∈ X,
ϕ(n) holds. Therefore, by assumption, ϕ(n + 1) = ϕ(m) also holds. But then m 6∈ X (contradiction).

Therefore, X must be empty. Thus ϕ(n) holds for all n ≥ 0. �

We will accept that the PMI is true and so the WOP must hold as well. It turns out that a familiar
result from grade school follows immediately from the WOP.

Theorem: [Division Algorithm] Let a, b ∈ Z and suppose b 6= 0. Then there exists unique integers
q, r ∈ Z such that a = bq + r and 0 ≤ r < |b|. We call q the quotient and r the remainder.

This is nothing more than division with remainder. One first computes quotients and remainders using
repeated subtraction. This gives us a glimpse of how to prove this very important result.
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proof: Let X = {a − qb | q ∈ Z such that a − qb ≥ 0} (we repeatedly subtract b from a). Notice that
if a ≥ 0, then a − 0b ∈ X (q = 0 and a − 0q ≥ 0). Now if a < 0, then, noting that b2 > 0 since b 6= 0,
we have −ab2 ≥ −a = |a| so a − ab2 ≥ 0 thus a − qb = a − (ab)b ∈ X (where q = ab and we have that
a− (ab)b ≥ 0). All of this to say, X is non-empty.

Since X is a non-empty set of non-negative integers, by the WOP, it has a minimal element. Let’s call
this element r. Thus r = a− qb ≥ 0 for some q ∈ Z. It looks like we’re nearly done since a = bq + r and
r ≥ 0. Now suppose that r ≥ |b|. Then notice that 0 ≤ r− |b| = a− bq− |b| = q− b(q± 1) (+ if b > 0 and
− if b < 0). Thus r − |b| ∈ X and so r is not the minimum (contradiction). Therefore, r < |b| and we are
done (except for uniqueness).

As is usually the case with uniqueness proofs, we assume that there are two solutions and show they
are equal. Suppose a = bq + r and a = bq′ + r′ where q, r, q′, r′ ∈ Z and 0 ≤ r, r′ < |b|. Without loss of
generality, let us assume that r ≤ r′. Notice that 0 = a − a = (bq′ + r′) − (bq + r) = b(q′ − q) + (r′ − r).
Therefore, b(q − q′) = r′ − r. If q − q′ 6= 0, then b(q − q′) must have an absolute value of at least |b|. But
this cannot happen since b(q − q′) = r′ − r < |b|. Therefore, q − q′ = 0 so q = q′. This then implies that
r′ − r = b(q − q′) = b(0) = 0 so r = r′ as well. Thus we have shown that any pair of valid quotients and
remainders must match (i.e. they’re unique). �

Next, we will turn our attention to greatest common divisors (and to a lesser extent, least common
multiples).

Definition: Let a, b ∈ Z. We say that a divides b, denoted a
∣∣∣b, if there exists some k ∈ Z such that ak = b

(i.e. b is an integer multiple of a). Next, if for some c ∈ Z, we have c
∣∣∣a and c

∣∣∣b, then c is called a common

divisor of a and b. Likewise, if a
∣∣∣c and b

∣∣∣c, then c is a common multiple of a and b.

When either a or b is non-zero, the set of common divisors are bounded above by max{|a|, |b|}, so
in this case a greatest common divisor (gcd), denoted gcd(a, b), exists. Likewise, when both a and b are
non-zero, the set of (positive) common multiples is bounded below by max{|a|, |b|}, so in this case a least
common multiple (lcm), denoted lcm(a, b), exists. If either a or b is zero, define lcm(a, b) = 0.

Note: Sometimes books write (a, b) for gcd(a, b) and [a, b] for lcm(a, b).

Example: As we learn in grade school, the divisors of 12 are ±1,±2,±3,±4,±6,±12. The divisors of
15 are ±1,±3,±5,±15. The common divisors of 12 and 15 are ±1,±3. Therefore, gcd(12, 15) = 3. To
find the least common multiple, notice that any multiple of 12 needs two 2 factors and one 3 factor.
Likewise multiples of 15 need a 3 and a 5. Thus common multiples need at least 22 · 3 · 5 = 60. Therefore,
lcm(12, 15) = 60. Notice that 12 · 15 = gcd(12, 15) · lcm(12, 15) = 3 · 60 = 180.

Theorem: Suppose that a, b, c ∈ Z and that a
∣∣∣b and a

∣∣∣c. Then a divides any integral linear combination

of b and c. This means that a
∣∣∣mb + nc for any integers m,n ∈ Z. In particular, a

∣∣∣|b| (|b| = b or (−1)b).

proof: There exists some k, ` ∈ Z such that ak = b and a` = c. Thus mb+nc = mak+na` = a(mk+n`).

Since k, `,m, n ∈ Z we have mk + n` ∈ Z. Thus a
∣∣∣mb + nc. �

Theorem: Suppose a, b, q, r ∈ Z and that a = bq + r. Then a, b and b, r have the same common divisors.

proof: Suppose that c is a common divisor of a and b, so c
∣∣∣a and c

∣∣∣b. Then c
∣∣∣(1)a + (−q)b = r (since

r = (1)a + (−q)b is a integral linear combination of a and b). Thus c is a common divisor of both b and r.

Likewise, if c
∣∣∣b and c

∣∣∣r, then c
∣∣∣bq + r = a. Thus c is a common divisor of both a and b. �
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As a consequence of this theorem, we have that whenever a = bq + r, if gcd(a, b) and gcd(b, r) exist,
then gcd(a, b) = gcd(b, r). Why? Well, a, b and b, r have the same common divisors, so they must share
the same greatest common divisor.

This the key to establishing an ancient, extremely important algorithm:

Theorem: [Extended Euclidean Algorithm] Let a, b ∈ Z where b 6= 0. Set r0 = |b|. Use the division
algorithm to find q1, r1 ∈ Z such that a = r0q1 + r1 (where 0 ≤ r1 < r0). In general, if rn 6= 0, divide rn−1
by rn and get qn+1, rn+1 ∈ Z such that rn−1 = rnqn+1 + rn+1 (where 0 ≤ rn+1 < rn).

Then there exists some N ≥ 0 such that rN+1 = 0 and the last non-zero remainder: rN = gcd(a, b).
Moreover, using the quotients and remainders from this procedure, we can find x, y ∈ Z such that ax+by =
gcd(a, b).

Note: Using repeated divisions to find the greatest common divisor is known as the Euclidean algorithm.
The process of combining the results of these divisions to build up the greatest common divisor as an integral
linear combination gives us the “extended ” part of the algorithm.

proof: Notice our remainders: |b| = r0 > r1 > · · · > rn−1 > rn ≥ 0. Each remainder is smaller than the
previous one. So we cannot divide more than |b| times. This implies that our procedure must eventually
terminate. Moreover, we must eventually get a reminader of zero. Why? If not, the set of remainders is a
non-empty set of non-negative integers which must, by the WOP, have a minimal element. If this element
is rN > 0, we could just divide again (by rN) and get rN+1 < rN so that rN isn’t actually the minimum
(contradiction).

Now that we know that our algorithm terminates, seeing that it actually computes the greastest common
divisor is simple. So far we have some N ≥ 0 such that rN > 0 and rN+1 = 0.

First, notice that everything divides zero: x0 = 0 so x
∣∣∣0. Therefore, the greatest common divisor of 0

and rN is actually just rN (every divisor of rN > 0 must be smaller than rN). Therefore, gcd(rN , 0) = rN .
Also, notice that b and −b have the same divisors so

gcd(a, b) = gcd(a, |b|) = gcd(a, r0) = gcd(r0, r1) = · · · = gcd(rN−1, rN) = gcd(rN , rN+1) = gcd(rN , 0) = rN

Finally, let d = gcd(a, b) = rN . Also, let r−1 = a (to make our notation consistent). Then we have
rn−1 = rnqn+1 + rn+1 for all 0 ≤ n ≤ N . Therefore, rn+1 = (1)rn−1 + (−qn+1)rn.

Set xN = 1 and yN = −qN . Then d = rN = (1)rN−2 + (−qN)rN−1 = xNrN−2 + yNrN−1. Now
since rn+1 = (1)rn−1 + (−qn+1)rn, we can replace rN−1 with (1)rN−3 + (−qN−1)rN−2. This gives us d =
xNrN−2 + yN [(1)rN−3 + (−qN−1)rN−2]. Letting xN−1 = yN and yN−1 = xN − qN−1yN , we have d =
xN−1rN−3 + yN−1rN−2. Continuing in this fashion we end up with d = x1r−1 + y1r0 = xa + yb letting
x = x1 and y = ±y1 (r0 = |b| = ±b). �

Example: Consider 246 and 50. Divide 246 by 50 and get 246 = (4)50 + 46. Now divide 50 by 46 and get
50 = (1)46 + 4. Next, divide 46 by 4 and get 46 = (11)4 + 2. Finally, divide 4 by 2 and get 4 = (2)2 + 0.
The last non-zero remainder is 2. Therefore, gcd(246, 50) = 2.

Next, let’s run backwards through our divisions. We have 2 = (1)46 + (−11)4. Subbing in 4 = (1)50 +
(−1)46, we get 2 = (1)46+(−11)[(1)50+(−1)46] = (−11)50+(12)46. Now subbing in 46 = (1)246+(−4)50,
we get 2 = (−11)(50) + (12)[(1)246 + (−4)50] = (12)246 + (−59)50. Therefore, (12)246 + (−59)50 = 2.

Theorem: Let a, b ∈ Z not both zero. Let d = gcd(a, b). If c is a common divisor of a and b, then c
∣∣∣d.

proof: By the extended Euclidean algorithm there exists some x, y ∈ Z such that ax + by = d. Now c
∣∣∣a

and c
∣∣∣b, so c

∣∣∣ax + by = d (an integral linear combination of a and b). �
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Theorem: Let a, b ∈ Z where both a and b are non-zero. Let ` = lcm(a, b). If c is a common multiple of

a and b, then `
∣∣∣c.

proof: Note ` ≥ max{|a|, |b|} > 0 since ` is a positive multiple of both a and b. Thus, using the division
algorithm, we can divide c by `. There exists some q, r ∈ Z such that c = `q + r where 0 ≤ r < `.

Now c and ` are common multiples of a and b. Since a
∣∣∣c and a

∣∣∣`, we have a
∣∣∣c − `q = r (an integral

linear combination of c and `). Likewise, b
∣∣∣r. Therefore, r is a common multiple of a and b. But 0 ≤ r < `

and ` is the least common multiple. Therefore, r cannot be a positive common multiple. This means r = 0,

so c = `q which means `
∣∣∣c. �

A very useful characterization of greatest common divisors comes from their description in terms of
linear combinations.

Theorem: Let a, b ∈ Z not both zero, and let d = gcd(a, b). Then dZ = aZ + bZ, that is:

{kd | k ∈ Z} = {ax + by | x, y ∈ Z}

In other words, integral linear combinations of a and b are multiples of gcd(a, b) and conversely any multiple
of gcd(a, b) is an integral linear combination of a and b. As an immediate consequence, gcd(a, b) is the
smallest positive integral linear combination of a and b.

proof: By the extended Euclidean algorithm there exists m,n ∈ Z such that am + bn = d.
Let x ∈ dZ. There exists some k ∈ Z such that x = dk. But then x = dk = (am + bn)k =

a(mk) + b(nk) ∈ aZ + bZ. Therefore, dZ ⊆ aZ + bZ.
Conversely, suppose that x ∈ aZ+bZ. There exists some m,n ∈ Z such that x = am+bn. By definition

d
∣∣∣a and d

∣∣∣b (d is a common divisor). It then follows that d
∣∣∣am + bn = x. Thus there is some k ∈ Z such

that x = dk so x ∈ dZ. Therefore, aZ + bZ ⊆ dZ.
We have shown that dZ ⊆ aZ + bZ and aZ + bZ ⊆ dZ. Therefore, dZ = aZ + bZ. �

Example: Suppose that for some a, b, x, y ∈ Z, we have ax + by = 6. What can we conclude about
d = gcd(a, b)?

We cannot conclude that gcd(a, b) = 6. However, 6 = ax + by ∈ aZ + bZ = dZ. Therefore, d
∣∣∣6. This

means that d = 1, 2, 3, or 6.

On the other hand if ax + by = 1, we can conclude that d = gcd(a, b)
∣∣∣1 and so gcd(a, b) = 1!

Definition: Let a, b ∈ Z. We say that a and b are relatively prime if gcd(a, b) = 1. The above discussion
shows that a and b are relatively prime if and only if there exists x, y ∈ Z such that ax + by = 1.

Recall that if p ∈ Z and p > 1, then p is prime if its only positive divisors are 1 and p.

Theorem: [Euclid’s Lemma] Let a, b ∈ Z and p be a prime. If p
∣∣∣ab, then either p

∣∣∣a or p
∣∣∣b.

proof: Suppose that p6
∣∣∣a. We need to show that p

∣∣∣b.
The only positive divisors of p are 1 and p, this means that gcd(p, n) = 1 or p for any n ∈ Z. Since p6

∣∣∣a,

gcd(p, a) = 1. Therefore, a and p are relatively prime and so there exists x, y ∈ Z such that ax + py = 1.

But then b = b(ax + py) = (ab)x + (p)by. Now p
∣∣∣ab and, of course, p

∣∣∣p, so p
∣∣∣(ab)x + (p)by = b. �

This leads us to the fundamental theorem of arithmetic.
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Theorem: [Fundamental Theorem of Arithmetic] Let n ∈ Z>1. There exists primes p1 < · · · < p`
and positive integers k1, . . . , k` ∈ Z>0 such that n = pk11 · · · p

k`
` . Moreoever, this factorization is unique.

proof: (sketch) Consider n = 2. Since 2 is prime, it is already factored. Let us proceed using induction.
Suppose that all integers x such that 2 ≤ x < n have factorizations. Either n is prime (it is already

factored) or n is not prime. If n isn’t prime there exists some a ∈ Z>0 such that a
∣∣∣n and a 6= 1 or n. Thus

there is some b ∈ Z>0 so that ab = n. Now since a 6= 1 or n, we have b 6= n or 1.
Thus 1 < a, b < n. By our inductive hypothesis a and b can be factored into primes. Multiplying

these factorizations together yields a factorization for n = ab. Therefore, by induction, all n ≥ 2 have
factorizations.

Next, suppose n = pk11 · · · p
k`
` = qm1

1 · · · qmr
r are two factorizations. Then since p` clearly divides n =

pk11 · · · p
k`
` , it divides qm1

1 · · · qmr
r . Thus by Euclid’s lemma p` either divides qm1

1 · · · q
mr−1

r−1 qmr−1
r or qr. If it

divides qm1
1 · · · q

mr−1

r−1 qmr−1
r , then it must either divide qm1

1 · · · q
mr−1

r−1 qmr−2
r or qr. Continuing in this fashion,

we see that p` either divides qm1
1 · · · q

mr−1

r−1 or qr. Continuing further, we see that p` must divide one of the
q1, . . . , qr. But qi’s are primes (the only divisors of qi are 1 and qi itself). Therefore p` = qi for some i.
Thus p` can be canceled off from both sides of: pk11 · · · p

k`
` = qm1

1 · · · qmr
r .

Continuing in this fashion we can cancel off all of the pi’s. This leaves us with 1 on the left hand
side and potentially some qi’s on the right hand side. Since any product of primes is bigger than 1, we
must have canceled off all of the qi’s and so the factorizations must have matched exactly (we canceled
everything in pairs)!

Note: I labeled this proof as a “sketch” since I have left out some details. For example, each time I
wrote “continuing in this fashion” I should (in a more formal setting) have set up an inductive argument.
Also, if we allow prime exponents to be zero, we can give 1 a “factorization” as well: 1 = 20. �

Theorem: Let a = pk11 · · · p
k`
` and b = ps11 · · · p

s`
` be factorizations of postive integers a and b. [Here we

allow ki’s and sj’s to be zero if the corresponding prime doesn’t appear in a or b’s factorization.] Then
gcd(a, b) = pm1

1 · · · p
m`
` and lcm(a, b) = pM1

1 · · · p
M`
` where mj = min{kj, sj} and Mj = max{kj, sj}.

proof: Let d = gcd(a, b). Then d factors into primes, say d = pr11 · · · p
r`
` . Since d

∣∣∣a and d
∣∣∣b, we must

have at least rj copies of pj in the factorizations of both a and b. Thus rj ≤ min{kj, sj} = mj. But
c = pm1

1 · · · p
m`
` is a common divisor of a and b since at least mj copies of pj appear in the factorizations of

a and b. Since c is a common divisor, d
∣∣∣c. Thus rj ≥ mj for each j. This establishes that rj = mj for all

j = 1, . . . , `. This implies that d = pm1
1 · · · p

m`
` .

A very similar argument will establish the corresponding formula for the least common multiple. �

Theorem: Let a, b ∈ Z be non-negative integers and not both zero. Then gcd(a, b) · lcm(a, b) = ab.

proof: Notice that x + y = min{x, y} + max{x, y}. Referring to the notation established in the last
theorem, we have kj + sj = mj + Mj. The result follows. �

We already know how to add, subtract, and multiply mod n. Really, these operations are essentially
the same as adding, subtracting, and multiplying integers. We just need to remember to “reduce mod n”
at the end.

Division is a little trickier. The reason for this is that we can’t typically divide integers by integers and
get back integers (Example: 6/3 = 2, but 4/3 isn’t an integer). When we move over to modular arithmetic,
sometimes division works in cases it didn’t before.
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Theorem: Let a ∈ Z and n be some fixed positive integer. ax ≡ 1 (mod n) for some x ∈ Z if and only if
a and n are relatively prime.

proof: Suppose ax ≡ 1 (mod n) for some x ∈ Z. Then ax and 1 are off by a multiple of n. Therefore,
there exists some y ∈ Z such that ax + ny = 1. This implies that a and n are relatively prime.

Next, suppose that a and n are relatively prime. This implies that there are x, y ∈ Z such that
ax + ny = 1. Therefore, ax ≡ 1 (mod n). �

Thus x = a−1 exists mod n if and only if a and n are relatively prime. Notice that computing such
an inverse is equivalent to finding x, y ∈ Z such that ax + ny = 1. This can be done using the extended
Euclidean algorithm.

Example: Does 50−1 exist mod 246? No. We saw in a previous example that gcd(50, 246) = 2 6= 1, so no
(multiplicative) inverse exists.

Example: Does 50−1 exist mod 997? Let’s run the Euclidean algorithm.
997 divided by 50 gives 997 = 50(19) + 47. Now divide 50 by 47 and get 50 = 47(1) + 3. Next, 47 by 3

yields 47 = 3(15) + 2. Then, 3 by 2 gives 3 = 2(1) + 1. Finally, 2 divided by 1 gives 2 = 1(2) + 0. The last
non-zero divisor was 1. Therefore, gcd(997, 50) = 1. This means 997 and 50 are relatively prime, so 50−1

(mod 997) does exist.
To find the inverse we need run the Euclidean algorithm backwards. 1 = (1)3 + (−1)2. Then 2 =

(1)47 + (−15)3 so 1 = (1)3 + (−1)[(1)47 + (−15)3] thus 1 = (−1)47 + (16)3. Next, 3 = (1)50 + (−1)47
so 1 = (−1)47 + (16)[(1)50 + (−1)47] thus 1 = (16)50 + (−17)47. Finally, 47 = (1)997 + (−19)50 so
1 = (16)50 + (−17)[(1)997 + (−19)50] thus 1 = (−17)997 + (339)50.

Thus 50 · 339 ≡ 1 (mod 997). This means that 50−1 = 339 (mod 997).

Example: Consider the equation: 6x+ 1 ≡ 8 (mod 10). This is equivalent to trying to find x, y ∈ Z such
that 6x + 1 = 8 + 10y. Thus 6x− 10y = 7.

Now obviously gcd(6,−10) = 2, but then any integral linear combination of 6 and −10 must be a
multiple of 2. Since 2 does not divide 7 = 6x− 10y, finding x and y is impossible. Therefore, our equation
has no solution!

Example: Consider the equation: 6x+ 1 ≡ 8 (mod 11). As above, to solve this equation we need x, y ∈ Z
such that 6x − 11y = 7. But this time gcd(6,−11) = 1 and 1 does divide 7 = 6x − 11y. Thus there is
a solution. We could find such a solution by running the extended Euclidean algorithm, but let’s try a
different way.

Note that 6 and 11 are relatively prime so 6−1 exists mod 11. Therefore, x ≡ 6−1(8− 1) = 6−1 · 7 (mod
11). Now 6 and 11 are small enough that we can “guess” at 6’s inverse.

6−1 has 6 itself as its inverse, so 6−1 must be relative prime to 11. This 6−1 ∈ {1, 2, . . . , 10}. We can
just try these one at a time: 6 · 1 = 6 6≡ 1, 6 · 2 = 12 ≡ 1. We got lucky (on our second try)! 6−1 = 2 (mod
11).

Therefore, x ≡ 6−1 · 7 = 2 · 7 = 14 ≡ 3 (mod 11). This means that the complete set of solutions of

6x + 1 ≡ 8 (mod 11) is 3 + 11Z = {3 + 11k | k ∈ Z} .
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