
Math 3110 Even and Odd Permutations

We say a permutation is even if it can be written as a product of an even number of (usually
non-disjoint) transpositions (i.e. 2-cycles). Likewise a permutation is odd if it can be written as
a product of an odd number of transpositions. The first question is, “Can any permutation be
written as a product of transpositions?” The answer is “Yes.” ...well if we’re working in Sn for
n > 1 (of course, S1 doesn’t have any transpositions...it just has the identity). For the remainder
of this handout, fix some n > 1. Recall the trick:

(a1a2 . . . a`) = (a1a`)(a1a`−1) · · · (a1a3)(a1a2)

Also, (1) = (12)(12). Therefore, any cycle of any length can be written as a product of transpo-
sitions. Now since every permutation can be written as a product of (disjoint) cycles, we can use
this trick on each cycle and get: Every permutation can be written as a product of transpositions.

Consider the example:
(123) = (13)(12) = (34)(14)(34)(12) = (34)(12)(12)(14)(34)(12) = · · ·

Notice that (123) can be written as a product of transpositions in (infinitely) many different
ways. However, the three ways shown above have 2, 4, and 6 transpositions respectively – thus
(123) is even. Our next question is, “It is possible that (123) or any other permutation is both even
and odd?” The answer is “No” but this requires some proof.

Lemma: The identity is even — and not odd.
proof: First, we know that (1) = (12)(12), so the identity is even. Now suppose that (1) =

(a1a2) · · · (a`−1a`). We want to show that there must be an even number of these transpositions.
First, let’s see how to push transpositions past each other. There are 4 cases of interest: Let a, b, c, d
be distinct elements of the set {1, 2, . . . , n}.
• (cd)(ab) = (ab)(cd) — disjoint cycles commute.

• (bc)(ab) = (acb) = (cba) = (ca)(cb) — multiply out, cyclicly permute, transposition trick.

• (ac)(ab) = (abc) = (bca) = (ba)(bc) — same as before.

• (ab)(ab) = (1)
Notice that in the first 3 cases, we can move a to the left. In the last case, we cancel a out completely.

Now suppose a is the largest number appearing among all the transpositions in (a1a2) · · · (a`−1a`).
We can take the right-most occurrence of a and move it to the left. As we move all of the a’s to the
left, at some point, the a’s must cancel out (we have to end up with the “(ab)(ab)” case). If not,
we would have (1) = (ab)τ with no a’s appearing in τ . But this is impossible since τ maps a to a
(no occurrences of a in τ) and (ab) maps a to b so that (ab)τ is not the identity! Therefore, we can
get rid of all of the occurrences of a by canceling out transpositions in pairs. Continuing in this
fashion (after a is gone pick the next smallest remaining number), we will eventually cancel out all
of the transpositions. Since cancelations always occur in pairs, it must be that (1) was written as
an even number of transpositions. Therefore, (1) cannot be odd. �

Theorem: Every permutation in Sn (n > 1) is either even or odd, but not both.
proof: Let σ ∈ Sn. We know by the transposition trick above that σ can be written as a

product of transpositions. Suppose σ = (a1a2) · · · (a2`−1a2`) = (b1b2) · · · (b2k−1b2k). Then

(1) = σσ−1 = (a1a2) · · · (a2`−1a2`)[(b1b2) · · · (b2k−1b2k)]
−1

= (a1a2) · · · (a2`−1a2`)(b2k−1b2k)
−1 · · · (b1b2)−1

= (a1a2) · · · (a2`−1a2`)(b2k−1b2k) · · · (b1b2)
So we have written (1) as the product of `+ k transpositions. Our lemma says that `+ k must be
even. Therefore, either both k and ` are even or both are odd. �



Quick Computations:
We can quickly determine whether a permutation is even or odd by looking at its cycle structure.

First, notice that we can write an `-cycle as a product of `−1 transpositions. Therefore, even length
cycles are odd permutations and odd length cycles are even permutations (confusing but true). Thus
the 3-cycle (123) is an even permutation.

Next, notice that if σ can be written as a product of ` transpositions and τ can be written as
a product of k transpositions, then στ can be written as a product of ` + k transpositions. Then
we just recall that “even plus even is even” “odd plus odd is even” and “even plus odd is odd”. So
two even or two odd permutations multiplied (i.e. composed) together give us an even permutation
and an odd and an even permutation multiplied together give us an odd permutation.

Example: (123)(45)(6789) is even since (123) = even, (45) = odd, and (6789) = odd, so even +
odd + odd = even. Alternatively, (123)(45)(6789) = (13)(12)(45)(69)(68)(67) — 6 transpositions,
therefore, even.

The Sign Homomorphism:
Since we have well-defined notions of even and odd-ness, we can now define the map:

sgn(σ) = (−1)σ =

{
+1 σ is even
−1 σ is odd

}
This map is called the “sign homomorphism”. It can be used to define the determinant of a matrix.
Let A = (aij) be an n× n matrix with entries aij. Then

det(A) =
∑
σ∈Sn

(−1)σa1σ(1)a2σ(2) · · · anσ(n)

In particular, consider a 2 × 2 matrix. S2 = {(1), (12)}. Let σ = (1). σ is even so (−1)σ = +1.
Also, let τ = (12). τ is odd so (−1)τ = −1. Thus det(A) = (−1)σa1σ(1)a2σ(2) + (−1)τa1τ(1)a2τ(2) =
a11a22 − a12a21 (the regular determinant formula).

The Alternating Group:
From the last discussion we see that: even composed with even is even. Notice that the identity

is always even and also the inverse of an even permutation is even (if σ = (a1a2) · · · (a`−1a`), then
σ−1 = (a`−1a`) · · · (a1a2) — the same number of transpositions works for both σ and σ−1). Putting
this together we arrive at the following:

Theorem: For any n > 1, An = {σ ∈ Sn |σ is even } is a subgroup of Sn.

An is called the alternating group on n characters. These groups are very important. In fact,
An is a non-abelian simple group when n ≥ 5 (whatever that means).

Examples: A2 = {(1)} and A3 = {(1), (123), (132)}.
Our previous example, (123)(45)(6789), is an element of A9.

Notice that multiplying by (12) sends even permutations to odd permutations and vice-versa.
The map L(σ) = (12)σ is a bijection from An to the set of odd permutations. Thus exactly half of
the permutations in Sn are even and half are odd. This implies that the order of An is n!/2. For
example: |A3| = 3!/2 = 3 and |A4 = 4!/2 = 12.


