
(4)(4)

(2)(2)

(3)(3)

(1)(1)

Jordan Form Examples
Examples of finding the Jordan form of a matrix.

Note: The "interface" command forces Maple to print arbitrarily large matrices instead of suppressing
large matrix output.

restart;
with(LinearAlgebra):
interface(rtablesize=infinity):

Example: Let's find a matrix which puts A (defined below) into Jordan form.

A := <<2,-3,0>|<3,-4,0>|<2,-2,-1>>;

factor(CharacteristicPolynomial(A,t));

Let's find the ranks of the first few ...

Rank(IdentityMatrix(3));
Rank((A-(-1)*IdentityMatrix(3))^1);
Rank((A-(-1)*IdentityMatrix(3))^2);
Rank((A-(-1)*IdentityMatrix(3))^3);

3
1
0
0

So there are 3 - 1 = 2 (linearly independent) eigenvectors with eigenvalue -1. And there is 1 - 0 = 1
(linearly independent) generalized eigenvector (which is not a regular eigenvector) with eigenvalue -1.
Thus we have a 2-chain and a 1-chain.

To find the 2-chain we need to find the generalized (non-regular) eigenvector. Any element in Ker
 which does not lie in Ker will do. So we will find a basis for

 and complete it to a basis for . The extra vector that appears when we
complete the basis will be the

X := op(NullSpace((A-(-1)*IdentityMatrix(3))^1));
Y := op(NullSpace((A-(-1)*IdentityMatrix(3))^2));

F := <X[1]|X[2]|Y[1]|Y[2]|Y[3]>;

(4)(4)

(5)(5)

ReducedRowEchelonForm(F);

Thus lies in Ker but not in Ker . So we set and then
 to get our 2-chain.

q[1] := Y[1];
q[2] := (A-(-1)*IdentityMatrix(3)).Y[1];

end of the chain...
((A-(-1)*IdentityMatrix(3))^2).Y[1];

(4)(4)

(6)(6)

(7)(7)

(8)(8)

Now we need to find an element in Ker which is independent of .

X := op(NullSpace((A-(-1)*IdentityMatrix(3))^1));

F := <q[2]|X[1]|X[2]>;
ReducedRowEchelonForm(F);

So does the trick. Letting we have completed our basis of generalized eigenvectors.

q[3] := X[1];

Putting together in a matrix , we can put A into Jordan form.

Note: I will reverse the order of and so that the 1's in the Jordan form appear above the diagonal. If
we put the 's in order, the 1's will appear below the diagonal. By the way, some texts prefer to define
Jordan forms with 1's below the diagonal.

Q := <q[2]|q[1]|q[3]>;

J := Q^(-1).A.Q;

(9)(9)

(4)(4)

(8)(8)

Example: We will find the Jordan form (and a matrix to get A into Jordan form) where A is defined
as follows:

Note: I created this matrix by conjugating my desired Jordan form by a "random" matrix consisting of
integers between -3 and 3. If I had been more careful it wouldn't look so awful.

A := Matrix(11, 11, [35389/9812, -16135/9812, -23543/4906,
9937/9812, 3637/9812, -54211/9812, -40917/9812, 117133/9812,
-36445/4906, 20087/9812, -12382/2453, 1189/4906, 4159/4906,
-4242/2453, 1707/4906, -1905/4906, -2757/4906, -5405/4906,
19797/4906, -5523/2453, 10797/4906, -5727/2453, -559/4906,
-9271/4906, 6333/2453, -2911/4906, -5339/4906, -2929/4906,
-2182/2453, 8027/2453, -6679/2453, -2815/4906, 3330/2453,
405/2453, -7141/2453, -5021/2453, 9038/2453, -3956/2453,
-7510/2453, -18167/4906, 46795/4906, -14637/2453, -5732/2453,
72/2453, -7211/9812, 47789/9812, 29203/4906, -23123/9812,
47257/9812, 41985/9812, 25093/9812, -93537/9812, 27979/4906,
-28581/9812, 6984/2453, 11299/9812, -26013/9812, -26755/4906,
18363/9812, 1459/9812, -30693/9812, -54359/9812, 148791/9812,
-46213/4906, 19977/9812, -15088/2453, 4717/4906, -18581/4906,
-12647/2453, 6739/4906, -6167/4906, -26749/4906, -3318/2453,
29087/2453, -18907/2453, 10361/4906, -8357/2453, 3336/2453,
-7235/2453, -12758/2453, 3273/2453, -1260/2453, -12891/2453,
-20033/4906, 71559/4906, -19938/2453, 6079/2453, -11999/2453,
15215/9812, -2561/9812, -17075/4906, 10443/9812, 227/9812,
-30869/9812, -10623/9812, 29727/9812, 295/4906, 16545/9812,
-7773/2453, -3193/9812, -3457/9812, 6071/4906, -11941/9812,
-797/9812, 5939/9812, 6997/9812, 1615/9812, -2527/4906,
25161/9812, 1875/2453, -14715/9812, 12521/9812, 19669/4906,
-13579/9812, 5549/9812, 28381/9812, 15641/9812, -43481/9812,
14473/4906, -23137/9812, 14064/2453]);

(9)(9)

(10)(10)

(4)(4)

(8)(8)

The LinearAlgebra package has a command "JordanForm" to do this for us. The option "output='Q'"
returns the matrix which conjugates A into its Jordan form.

JordanForm(A);
Q := JordanForm(A,output='Q');
Q^(-1).A.Q;

(9)(9)

(10)(10)

(4)(4)

(8)(8)

(9)(9)

(10)(10)

(4)(4)

(8)(8)

(11)(11)

(9)(9)

(10)(10)

(4)(4)

(8)(8)

Let's go ahead and compute these things manually.

First, we should figure out what the eigenvalues of A are. This can be done directly using
"Eigenvalues" or indirectly by computing "CharacteristicPolynomial" and factoring. Maple's
characteristic polynomial is the same as that in Curtis: f(t) = det(tI-A) which differs from the Spence,
Insel, Freidberg polynomial by a factor of or in this case .

Eigenvalues(A);

(13)(13)

(9)(9)

(4)(4)

(14)(14)

(11)(11)

(15)(15)

(10)(10)

(8)(8)

(12)(12)
-CharacteristicPolynomial(A,t);

-factor(CharacteristicPolynomial(A,t));

Maple can compute the minimal polynomial of a matrix. Notice that A satisfies both of the
characteristic polynomial (by the Cayley-Hamilton Theorem) and minimal polynomial (by definition).

factor(MinimalPolynomial(A,t));

simplify(subs(t=A,CharacteristicPolynomial(A,t)));

simplify(subs(t=A,MinimalPolynomial(A,t)));

(9)(9)

(4)(4)

(17)(17)

(11)(11)

(15)(15)

(10)(10)

(8)(8)

(16)(16)

So far we know that A has two eigenvalues: with algebraic multiplicity 4 and with algebraic
multiplicity 7. Thus we need to find 4 (linearly independent) generalized eigenvectors with eigenvalue
5 and 7 with eigenvalue 2. But more than that, these vectors need to parts of chains if we are to get our
matrix into Jordan form.

To figure out the length of the chains we need to compute ranks of for (Actually we
only need to compute ranks up to the point we get a repeat. This will happen by the time we hit the
eigenvalue's algebraic multiplicity. On the other hand, Maple can happily compute more ranks than we
really need).

seq(Rank((A-5*IdentityMatrix(11))^i),i=0..11);

seq(Rank((A-2*IdentityMatrix(11))^i),i=0..11);

So we have that the nullity of is and the nullity of is (as is
the nullity of for all). This means we have 3 linearly independent eigenvectors with
eigenvalue 5 and 1 more generalized eigenvector (which is not a regular eigenvector). Thus we should
be able to find 1 chain of length 2 and 2 chains of length 1.

The nullity of is , the nullity of is , and the nullity of
 is (as is the nullity of for all). This means we have 3 linearly

independent eigenvectors with eigenvalue 2, more generalized eigenvectors in
which are not regular eigenvectors, and generalized eigenvector in

which are not . Thus we will have 1 chain of length 3 and 2 chains of length
2.

Let's find these chains.

First, . We will start with the chain of length 2. This is generated by the non-regular generlized

(18)(18)

(9)(9)

(4)(4)

(11)(11)

(15)(15)

(10)(10)

(8)(8)

eigenvector. We need something in which isn't in . So we'll find a basis
for and complete it to a basis for . The new vector that shows up when we
complete the basis will be the vector we're looking for.

X := op(NullSpace((A-5*IdentityMatrix(11))^1));
Y := op(NullSpace((A-5*IdentityMatrix(11))^2));

F := <X[1]|X[2]|X[3]|Y[1]|Y[2]|Y[3]|Y[4]>;
ReducedRowEchelonForm(F);

(18)(18)

(9)(9)

(4)(4)

(19)(19)

(11)(11)

(15)(15)

(10)(10)

(8)(8)

So the first vector in the basis for completes the basis from . Thus is a
generlized eigenvector which generates our chain of length 2. Let's call the vectors in this chain and

.

q[1] := Y[1];
q[2] := (A-5*IdentityMatrix(11)).Y[1];

end of the chain...
((A-5*IdentityMatrix(11))^2).Y[1];

(19)(19)

(18)(18)

(11)(11)

(9)(9)

(15)(15)

(10)(10)

(4)(4)

(8)(8)

(18)(18)

(9)(9)

(4)(4)

(19)(19)

(11)(11)

(15)(15)

(20)(20)

(10)(10)

(8)(8)

Next, we need to find our 1 chains (eigenvectors) which aren't among those we've already found (i.e.)
. So we find a basis for Ker and find which of these vectors completes the basis starting with
the eigenvector we already know.

X := op(NullSpace((A-5*IdentityMatrix(11))^1));

F := <q[2]|X[1]|X[2]|X[3]>;
ReducedRowEchelonForm(F);

(18)(18)

(9)(9)

(4)(4)

(19)(19)

(11)(11)

(15)(15)

(10)(10)

(20)(20)

(8)(8)

(21)(21)

The first two vectors in the basis for Ker do the job. We'll call these and .

q[3] := X[1];
q[4] := X[2];

(18)(18)

(22)(22)

(9)(9)

(4)(4)

(19)(19)

(11)(11)

(15)(15)

(10)(10)

(20)(20)

(8)(8)

(21)(21)

Now we move onto .

First, let's find our chain of length 3. We need a vector in Ker which does not belong to Ker
. So again we take basis for Ker and complete it to a basis for Ker . The

extra vector that shows up will be the one we're looking for.

X := op(NullSpace((A-2*IdentityMatrix(11))^2));
Y := op(NullSpace((A-2*IdentityMatrix(11))^3));

F := <X[1]|X[2]|X[3]|X[4]|X[5]|X[6]|Y[1]|Y[2]|Y[3]|Y[4]|Y[5]|Y
[6]|Y[7]>;
ReducedRowEchelonForm(F);

(18)(18)

(22)(22)

(9)(9)

(4)(4)

(19)(19)

(11)(11)

(15)(15)

(10)(10)

(20)(20)

(8)(8)

(21)(21)

(18)(18)

(22)(22)

(9)(9)

(4)(4)

(23)(23)

(19)(19)

(11)(11)

(15)(15)

(10)(10)

(20)(20)

(8)(8)

(21)(21)

This time gives us the missing basis element. Let's call this vector and generate its chain (calling
the other two vectors and).

q[5] := Y[4];
q[6] := (A-2*IdentityMatrix(11)).Y[4];
q[7] := ((A-2*IdentityMatrix(11))^2).Y[4];

end of the chain...
((A-2*IdentityMatrix(11))^3).Y[1];

(18)(18)

(22)(22)

(9)(9)

(4)(4)

(23)(23)

(19)(19)

(11)(11)

(15)(15)

(10)(10)

(20)(20)

(8)(8)

(21)(21)

(18)(18)

(22)(22)

(9)(9)

(4)(4)

(23)(23)

(19)(19)

(11)(11)

(15)(15)

(10)(10)

(20)(20)

(8)(8)

(24)(24)

(21)(21)

Now let's find our two chains of length 2. We need to find vectors in Ker which don't lie in
Ker and also don't appear in our previously computed chain. So we'll find a basis for Ker

 complete it to a basis for Ker chucking in front to rule it out. (Why ? Because
it lives at the same "level" as the beginning of our two new chains.)

X := op(NullSpace((A-2*IdentityMatrix(11))^1));
Y := op(NullSpace((A-2*IdentityMatrix(11))^2));

F := <q[6]|X[1]|X[2]|X[3]|Y[1]|Y[2]|Y[3]|Y[4]|Y[5]|Y[6]>;
ReducedRowEchelonForm(F);

(18)(18)

(22)(22)

(9)(9)

(4)(4)

(23)(23)

(19)(19)

(11)(11)

(15)(15)

(10)(10)

(20)(20)

(8)(8)

(24)(24)

(21)(21)

(18)(18)

(22)(22)

(9)(9)

(4)(4)

(23)(23)

(19)(19)

(11)(11)

(15)(15)

(10)(10)

(20)(20)

(8)(8)

(24)(24)

(21)(21)

(18)(18)

(22)(22)

(9)(9)

(4)(4)

(23)(23)

(25)(25)

(19)(19)

(11)(11)

(15)(15)

(10)(10)

(20)(20)

(8)(8)

(24)(24)

(21)(21)

The first two vectors in the new basis do the trick: and . Let's call them and (calling the
second element in these chains and respectively).

q[8] := Y[1];
q[9] := (A-2*IdentityMatrix(11)).Y[1];

q[10] := Y[2];
q[11] := (A-2*IdentityMatrix(11)).Y[2];

(18)(18)

(22)(22)

(9)(9)

(4)(4)

(23)(23)

(25)(25)

(19)(19)

(11)(11)

(15)(15)

(10)(10)

(20)(20)

(8)(8)

(24)(24)

(21)(21)

(9)(9)

(4)(4)

(23)(23)

(25)(25)

(19)(19)

(20)(20)

(21)(21)

(18)(18)

(22)(22)

(26)(26)

(11)(11)

(15)(15)

(10)(10)

(8)(8)

(24)(24)

Now we have a basis made entirely of chains of generalized eigenvectors. I will reverse the order of
each of these chains so our "1's" in our Jordan form appear above (instead of below) the main diagonal.

P := <q[2]|q[1]|q[3]|q[4]|q[7]|q[6]|q[5]|q[9]|q[8]|q[11]|q[10]>;

(9)(9)

(4)(4)

(23)(23)

(25)(25)

(19)(19)

(20)(20)

(21)(21)

(18)(18)

(22)(22)

(27)(27)

(26)(26)

(11)(11)

(15)(15)

(10)(10)

(8)(8)

(24)(24)

P^(-1).A.P;

