Undetermined Coefficients Examples

Example: Let's solve the following non-homogeneous linear differential equation (with constant coefficients) using the method of undetermined coefficients:

restart;
diff('y(t)',t\$3)-3*diff('y(t)',t\$2)+4*'y(t)'=18*exp(2*t)+54*t*exp(2*t);

$$\frac{d^3}{dt^3}y(t) - 3\left(\frac{d^2}{dt^2}y(t)\right) + 4y(t) = 18e^{2t} + 54te^{2t}$$
(1)

First, we'll write down the characteristic polynomial and solve the corresponding homogeneous equation.

So we have $L = (D + 1)(D - 2)^2$ and $(D - 2)^2$ annihilates $18e^{2t} + 54te^{2t}$. Normally our template for a particular solution would be $Ae^{2t} + Bte^{2t}$, but this overlaps with the homogeneous solution, so it must be adjusted (multiplying by t^2 makes sure it no longer overlaps): $y_p = At^2e^{2t} + Bt^3e^{2t}$ is our template solution.

Let's plug in our template, simplify, set coefficients of linearly independent functions equal to each other, and solve the corresponding linear system...

> simplify(diff(y_p,t\$3)-3*diff(y_p,t\$2)+4*y_p=18*exp(2*t)+54*t*exp (2*t));

$$6 e^{2t} (A+B+3Bt) = 18 e^{2t} (1+3t)$$

= solve(
$$\{6*A+6*B=18, 18*B=54\}$$
);
 $\{A=0, B=3\}$ (6)

(5)

Our general solution is $y = C_1 e^{-t} + C_2 e^{2t} + C_3 t e^{2t} + 3 t^3 e^{2t}$.

Example: Let's solve the following non-homogeneous linear differential equation (with constant coefficients) using the method of undetermined coefficients:

> restart;
> diff('y(t)',t\$2)+2*diff('y(t)',t)+10*'y(t)' = -2*exp(-t)*sin(3*t) +3*cos(5*t);

$$\frac{d^2}{dt^2}y(t) + 2\left(\frac{d}{dt}y(t)\right) + 10y(t) = -2e^{-t}\sin(3t) + 3\cos(5t)$$
(7)

First, we'll write down the characteristic polynomial and solve the corresponding homogeneous equation.

> solve(
$$r^2+2*r+10=0$$
);
-1+3 I, -1-3 I (8)

$$-1 + 3 I, -1 - 3 I$$
> $y := C_1 \cdot \exp(-t) \cdot \cos(3 \cdot t) + C_2 \cdot \exp(-t) \cdot \sin(3 \cdot t);$

$$y := C_1 e^{-t} \cos(3 t) + C_2 e^{-t} \sin(3 t)$$
(9)

Normally our template for a particular solution would be

 $Ae^{-t}\cos(3t) + Be^{-t}\sin(3t) + C\sin(5t) + E\cos(5t)$, but there is some overlap with the homogeneous solution, so it must be adjusted (multiplying the first two terms t makes sure it no longer overlaps): $y_n = A t e^{-t} \cos(3 t) + B t e^{-t} \sin(3 t) + C \sin(5 t) + E \cos(5 t)$ is our template solution. [Note: I'm avoiding using "D" as an undetermined coefficient since Maple has reserved the symbol "D"

for other uses.] $y_p := A*t*exp(-t)*cos(3*t)+B*t*exp(-t)*sin(3*t)+C*sin(5*t)+E*cos(5*t);$

(5*t);

$$y_p := A t e^{-t} \cos(3 t) + B t e^{-t} \sin(3 t) + C \sin(5 t) + E \cos(5 t)$$
 (10)

Let's plug in our template, simplify, set coefficients of linearly independent functions equal to each other, and solve the corresponding linear system...

> simplify(diff(y_p,t\$2)+2*diff(y_p,t)+10*y_p=-2*exp(-t)*sin(3*t)+3*
$$\cos(5*t)$$
);
-6 $A e^{-t} \sin(3 t) + 6 B e^{-t} \cos(3 t) - 15 C \sin(5 t) - 15 E \cos(5 t) + 10 C \cos(5 t)$ (11)
 $-10 E \sin(5 t) = -2 e^{-t} \sin(3 t) + 3 \cos(5 t)$

> solve(
$$\{-6*A=-2, 6*B=0, -15*C-10*E=0, -15*E+10*C=3\}$$
);

$$\left\{A = \frac{1}{3}, B = 0, C = \frac{6}{65}, E = -\frac{9}{65}\right\}$$
(12)

Our general solution is

$$y = C_1 e^{-t} \cos(3t) + C_2 e^{-t} \sin(3t) + \frac{1}{3} t e^{-t} \cos(3t) + \frac{6}{65} \sin(5t) - \frac{9}{65} \cos(5t).$$

Example: Let's solve the following non-homogeneous Cauchy-Euler linear differential equation using the method of undetermined coefficients:

```
restart;
```

>
$$t^2 = \frac{diff(y(t), t}{2) + 5 t} + \frac{diff(y(t), t) + 4 t}{y(t)} = -10 t \sin(3 t \ln(t))$$

+24 t cos(3 t ln(t));
$$t^2 \left(\frac{d^2}{dt^2} y(t)\right) + 5 t \left(\frac{d}{dt} y(t)\right) + 4 y(t) = -10 \sin(3 \ln(t)) + 24 \cos(3 \ln(t))$$
 (13)

First, we'll write down the characteristic polynomial and solve the corresponding homogeneous equation.

> solve(
$$r*(r-1)+5*r+4=0$$
);
-2, -2 (14)

$$y := C_1*t^{(-2)}+C_2*ln(t)*t^{(-2)};$$

$$y := \frac{C_1l}{l^2} + \frac{C_2ln(l)}{l^2}$$
(15)

Our first try at a template for a particular solution should be $A \cos(3 \ln(t)) + B \sin(3 \ln(t))$. Since there's no overlap, we don't need to adjust our template.

>
$$y_p := A*cos(3*ln(t))+B*sin(3*ln(t));$$

 $y_p := Acos(3 ln(t)) + Bsin(3 ln(t))$ (16)

Let's plug in our template, simplify, set coefficients of linearly independent functions equal to each other, and solve the corresponding linear system...

> simplify(t^2*diff(y_p,t\$2)+5*t*diff(y_p,t)+4*y_p = -10*sin(3*ln(t)) +24*cos(3*ln(t)));
-5
$$A \cos(3 \ln(t)) - 12 A \sin(3 \ln(t)) - 5 B \sin(3 \ln(t)) + 12 B \cos(3 \ln(t)) =$$

$$-10 \sin(3 \ln(t)) + 24 \cos(3 \ln(t))$$
(17)

> solve(
$$\{-5*A+12*B=24, -12*A-5*B=-10\}$$
);
 $\{A=0, B=2\}$ (18)

Our general solution is $y = C_1 t^{-2} + C_2 \ln(t) t^{-2} + 2 \sin(3 \ln(t))$

Example: Let's solve the following non-homogeneous Cauchy-Euler linear differential equation using the method of undetermined coefficients:

```
> restart;
> t^2*diff('y(t)',t$2)+5*t*diff('y(t)',t)+4*'y(t)'=8*t^(-2);
t^2 \left(\frac{d^2}{dt^2}y(t)\right) + 5t \left(\frac{d}{dt}y(t)\right) + 4y(t) = \frac{8}{t^2} (19)
```

Since the corresponding homogeneous equation is the same as the last example, we have...

$$> y := C_1*t^(-2)+C_2*ln(t)*t^(-2);$$
 (20)

$$y := \frac{C_{-}1}{\ell^{2}} + \frac{C_{-}2\ln(t)}{\ell^{2}}$$
 (20)

Our first try at a template for a particular solution is $y_p = A t^{-2}$. However, this overlaps with the homogeneous solution so we must adjust by multiplying by some power of $\ln(x)$. In this case, we need $(\ln(x))^2$. This gives us the template solution $y_p = A t^{-2} (\ln(t))^2$.

$$y_p := A*t^(-2)*(ln(t))^2;$$

$$y_p := \frac{A \ln(t)^2}{t^2}$$
(21)

Let's plug in our template, simplify, set coefficients of linearly independent functions equal to each other, and solve the corresponding linear system...

> simplify(t^2*diff(y_p,t\$2)+5*t*diff(y_p,t)+4*y_p = 8*t^(-2));

$$\frac{2A}{t^2} = \frac{8}{t^2}$$
(22)

> solve(
$$\{2*A=8\}$$
); $\{A=4\}$ (23)

Our general solution is $y = C_1 t^{-2} + C_2 \ln(t) t^{-2} + 4 (\ln(t))^2 t^{-2}$.

Example: Find $\int t e^{-t} \cos(3 t) dt$ using the method of undetermined coefficients.

Finding this integral is the same as solving $y'=t e^{-t} \cos(3 t)$. Our template for a solution should be $y_p = (At + B)e^{-t} \cos(3 t) + (Ct + E)e^{-t} \sin(3 t)$. We need to differentiate, equate coefficients, and solve some linear equations...

```
> restart;

> y_p := (A*t+B)*exp(-t)*cos(3*t)+(C*t+E)*exp(-t)*sin(3*t);

y_p := (At+B) e^{-t} cos(3t) + (Ct+E) e^{-t} sin(3t) (24)

> simplify(diff(y_p,t)=t*exp(-t)*cos(3*t));

-e^{-t} (-A cos(3t) + cos(3t) At + cos(3t) B + 3 sin(3t) At + 3 sin(3t) B - C sin(3t)

+ sin(3t) Ct + sin(3t) E - 3 cos(3t) Ct - 3 cos(3t) E) = t e^{-t} cos(3t)
```

> solve({-A+3*C=1,A-B+3*E=0,-3*A-C=0,-3*B+C-E=0});

$$\left\{A = -\frac{1}{10}, B = \frac{2}{25}, C = \frac{3}{10}, E = \frac{3}{50}\right\}$$
(26)

Thus
$$\int t e^{-t} \cos(3t) dt = \left(-\frac{1}{10}t + \frac{2}{25}\right) e^{-t} \cos(3t) + \left(\frac{3}{10}t + \frac{3}{50}\right) e^{-t} \sin(3t) + C$$
 (Note:

y = C is our homogeneous solution.)

Of course, if we're going to use Maple anyway, it would be better just to go ahead and integrate...

$$= \frac{1}{10} t + \frac{2}{25} e^{-t} \cos(3t) - \left(-\frac{3}{10}t - \frac{3}{50}\right) e^{-t} \sin(3t)$$
 (27)

Example: Find $\int (\ln(t))^2 t^{-\frac{t}{2}} dt$ using the method of undetermined coefficients.

Find this integral is equivalent to solving $ty' = (\ln(t))^2 t^{-\frac{5}{2}}$ (notice we had to multiply both sides by t). Our template for a solution should be $y_p = A(\ln(t))^2 t^{-\frac{5}{2}} + B(\ln(t)) t^{-\frac{5}{2}} + C t^{-\frac{5}{2}}$. We need to differentiate, equate coefficients, and solve some linear equations...

> restart;
> y_p := A*(ln(t))^2*t^(-5/2)+B*ln(t)*t^(-5/2)+C*t^(-5/2);
$$y_p := \frac{A \ln(t)^2}{t^{5/2}} + \frac{B \ln(t)}{t^{5/2}} + \frac{C}{t^{5/2}}$$
(28)

$$\begin{array}{c}
\hline > simplify(t*diff(y_p,t)=(ln(t))^2*t^(-5/2)); \\
-\frac{1}{2} \frac{-4 A \ln(t) + 5 A \ln(t)^2 - 2 B + 5 B \ln(t) + 5 C}{t^{5/2}} = \frac{\ln(t)^2}{t^{5/2}}
\end{array} (29)$$

Thus
$$\int (\ln(t))^2 t^{-\frac{7}{2}} dt = -\frac{2}{5} (\ln(t))^2 t^{-\frac{5}{2}} - \frac{8}{25} (\ln(t)) t^{-\frac{5}{2}} - \frac{16}{125} t^{-\frac{5}{2}} + C$$

$$\begin{array}{c} = \text{int}((\ln(t))^2 *t^{-7/2}, t); \\
-\frac{2}{5} \frac{\ln(t)^2}{t^{5/2}} - \frac{8}{25} \frac{\ln(t)}{t^{5/2}} - \frac{16}{125 t^{5/2}} \end{array} \tag{31}$$

Side question: How would you go about solving this problem in Calculus II?

Simply use the *u*-substitution $u = \ln(t)$ (so $e^u = t$ and $e^u du = dt$) and so

 $\int (\ln(t))^2 t^{-\frac{7}{2}} dt = \int u^2 (e^u)^{-\frac{7}{2}} e^u du = \int u^2 e^{-\frac{5}{2}u} du$ then do integration by parts twice and sub-back in t's.