
Calculus IV The Structure of Rn

Manifolds are spaces that “locally look like” Rn in various ways. Up to some technical assumptions, if
we locally look like Rn’s topological structure, we are a topological manifold. Differentiable structure? A
smooth manifold. Inner product space structure? A Riemannian manifold. Before unraveling what locally
and looks like means, let us first explore what kinds of standard structures Rn is equipped with.

First, Rn is a (real) vector space. In particular, we can add and scale (by real numbers) elements of
Rn. We have the following properties (for all u,v,w ∈ Rn and s, t ∈ R):

• Closure under addition: v + w ∈ Rn and closure under scalar multiplication: sv ∈ Rn

• Associativity of addition: (u + v) + w = u + (v + w) and compatibility of multiplication of scalars
and scalar multiplication: (st)v = s(tv)

• Additive identity: 0 + v = v = v + 0 and multiplicative identity: 1 v = v

• Additive inverses: v + (−v) = 0 = (−v) + v

• Commutativity: v + w = w + v and somewhat unofficially: v s = sv

• Distributivity: s(v + w) = sv + sw and (s+ t)v = sv + tv

This vector space structure allows us to do linear algebra stuff, but it does not really help us do real
geometry or analysis. However, in addition to Rn’s vector space structure, it has inner product space
structure. In particular, Rn is equipped with the dot product:

(v1, v2, . . . vn) • (w1, w2, . . . , wn) = v1w1 + v2w2 + · · ·+ vnwn

This is an example of an inner product. In particular, we have (for all u,v,w ∈ Rn and s ∈ R):

• Bilinearity: (u + v) •w = u •w + v •w, u • (v + w) = u •v + u •w,
and (sv) •w = s(v •w) = v • (sw)

• Symmetry: v •w = w •v

• Positive definiteness: v •v ≥ 0 and v •v = 0 only if v = 0

An inner product is quite powerful. It allows us to define concepts such as length and angle. In
particular, because of positive definiteness, we can define (for all v = (v1, v2, . . . vn) ∈ Rn):

‖v‖ =
√

v •v =
√
v21 + v22 + · · ·+ v2n

to be the length (= magnitude = norm) of v. In general, a vector space equipped with a mapping into the
reals such that (for all vectors v,w, and scalars s ∈ R):

• Positive definiteness: ‖v‖ ≥ 0 and ‖v‖ = 0 only if v = 0

• Scalar multiplication compatibility: ‖sv‖ = |s| ‖v‖

• Triangle inequality: ‖v + w‖ ≤ ‖v‖+ ‖w‖

is called a normed space. It is easy to see (except for the triangle inequality) that an inner product space
is also a normed space when we define length as we did above. We prove the following rather important
result which in turn lets us establish the triangle inequality with ease:
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Theorem (Cauchy-Schwarz Inequality): For all v,w ∈ Rn, |v •w| ≤ ‖v‖ ‖w‖.

Proof: Let x be an arbitrary real number. Consider 0 ≤ ‖xv + w‖2 = (xv + w) • (xv + w) = x2(v •v) +
x(v •w) + x(w •v) + w •w where we used bilinearity to pull apart the dot product. Next, we can use
symmetry to put the middle terms together. Therefore, we have a quadratic in x:

y = ‖v‖2x2 + 2(v •w)x+ ‖w‖2 (= ‖xv + w‖2 ≥ 0)

Being non-negative, our quadratic cannot have distinct real roots. Therefore, the discriminant (for Ax2 +
Bx+C the discriminant is B2−4AC) must be non-positive: (2 v •w)2−4‖v‖2‖w‖2 ≤ 0 so that 4(v •w)2 ≤
4(‖v‖ · ‖w‖)2. Thus (v •w)2 ≤ (‖v‖ · ‖w‖)2 so |v •w| ≤ ‖v‖ ‖w‖. �

The triangle inequality easily follows from Cauchy-Schwarz:

‖v + w‖2 = v •v + v •w + w •v + w •w = ‖v‖2 + 2(v •w) + ‖w‖2

≤ ‖v‖2 + 2|v •w|+ ‖w‖2 ≤ ‖v‖2 + 2‖v‖‖w‖+ ‖w‖2 = (‖v‖+ ‖w‖)2

where we used v •w ≤ |v •w| (i.e., x ≤ |x|) and then the Cauchy-Schwarz inequality. Square-rooting
yields: ‖v + w‖ ≤ ‖v‖+ ‖w‖. �

The Cauchy-Schwarz inequality implies that for nonzero vectors v and w, we have
|v •w|
‖v‖ ‖w‖

≤ 1. This

means that −1 ≤ v •w

‖v‖ ‖w‖
≤ 1 so that θ = arccos

(
v •w

‖v‖ ‖w‖

)
makes sense. In other words, we can

define the notion of angle between vectors (leaving the angle between the zero vector and other vectors is
undefined) using our inner product. In the reverse direction, a standard argument using the law of cosines
shows that this “definition” of angle between vectors matches with our usual geometric definition of angle.
In general, even when we involve the zero vector, we have our familiar identity: v •w = ‖v‖ ‖w‖ cos(θ)
where θ is the angle between v and w.

Next, normed space structure leads to metric space structure. Be careful: in manifold theory, a metric
is a smoothly varying inner product assigned to tangent spaces (whatever that means). On the other hand,
in our immediate setting, a metric refers something different:

Definition: A set X equipped with a mapping d : X × X → R (called a metric or a distance function)
such that (for all x, y, z ∈ X):

• Positivity: d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y

• Symmetry: d(x, y) = d(y, x)

• Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

is called a metric space.

Using our norm (i.e., vector length), we can turn Rn into a metric space. In particular, we have the
familiar distance function (for x = (x1, . . . , xn) and y = (y1, . . . , yn)):

d(x,y) = ‖x− y‖ =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2

Proof: Notice d(v,w) = ‖v−w‖ ≥ 0. This is 0 if and only if v−w = 0 (i.e., v = w). Symmetry is easy:
d(v,w) = ‖v −w‖ = ‖ − (w − v)‖ = | − 1| · ‖w − v‖ = d(w,v). The triangle inequality follows from its
norm version: d(u,w) = ‖u−w‖ = ‖u− v + v −w‖ ≤ ‖u− v‖+ ‖v −w‖ = d(u,v) + d(v,w). �

Note: Working in R2, we have d((x1, x2), (y1, y2)) =
√

(x1 − y1)2 + (x2 − y2)2 and in R = R1, we have
d(x, y) =

√
(x− y)2 = |x− y|.
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Completeness: A metric space space is called complete if every Cauchy sequence converges.1 A normed
space whose corresponding metric structure is complete is called a Banach space. An inner product space
whose corresponding metric structure is complete is called a Hilbert space. One usually wants (at a
minimum) Banach structure to do calculus stuff. We note that Rn is complete (i.e., it is a Hilbert space
and thus Banach space too).

With distances in hand, we have a notion of closeness. This lets us define topological structure.

Definition: A set X equipped with a collection of subsets T (called a topology on X) such that:

• The empty set ∅ and X itself belong to T

• Finite intersections belong: If A and B belong to T then so does A ∩B

• Arbitrary unions belong: Suppose Ai is in T (for all i in some index set I). Then their union⋃
i∈I

Ai = {x ∈ X | x ∈ Ai for some i ∈ I} also belongs to T

is called a topological space. The subsets of X belonging to T are called open sets.

Let x0 ∈ Rn and ε be a positive real number. Define Bε(x0) = {x ∈ Rn | d(x,x0) < ε} (i.e., the set of
all points less than ε distance to x0) to be the open ball centered at x0 of radius ε. Let U ⊆ Rn. Then U is
open if and only if for every x0 ∈ U there is some ε > 0 such that Bε(x0) ⊆ U . In other words, U is open
if and only if given any point in U , the points arbitrarily close by also belong to U . It is not hard to show
that this defines a topology on Rn. In fact, this is how one can define a topology on any metric space.

Proof: The empty is vacuously open.2 Using ε = 1 (or really any positive number), one sees that
Bε(x0) ⊆ Rn for all x0 ∈ Rn so Rn is open. Suppose A and B are open sets. Consider x0 ∈ A ∩ B. Then
since x0 belongs to both A and B and since these sets are open, B1 = Bε1(x0) ⊆ A and B2 = Bε2(x0) ⊆ B
for some ε1, ε2 > 0. Notice that if ε = min{ε1, ε2}, then Bε(x0) is contained in both (in fact equal to one
of) B1 and B2. Thus Bε(x0) is contained in both A and B, so Bε(x0) ⊆ A ∩B. Therefore, A ∩B is open.
Finally, if x0 belongs to a union of open sets, then it must belong to at least one of them, say U . Since
U is open, there must be an open ball about x0 contained in that set, say B. Thus since B ⊆ U , B is
contained in the union of the collection of open sets that include U . Therefore, the union of open sets is
open. �

Topology is a weird beast. We can still do large amounts of analysis in this context. We can even do
some kinds of abstract geometry. But topology does not know about things like boundedness, distance,
angle, and volume. However, topology does allow us to formulate a notion of locality. We will say a
property holds locally at x0 if it holds on some open set containing x0. In Rn, this is equivalent to saying
that there is some ε > 0 such that this property holds for all points within ε distance of x0.

In General: Every inner product space gives us a compatible normed space structure. Every normed
space gives us a compatible metric space structure. Every metric space gives us a compatible topological
space structure. None of this reverses (in general). Inner product spaces have many layers of rich structure.
In such a space, linear algebra, geometry, analysis, and topology all have something to tell us.3

1What does this mean? Briefly, a Cauchy sequence is a list: x1, x2, . . . such that the further down the list we go, the closer
the xi’s get to each other: For every ε > 0 there is some N > 0 such that for all i, j ≥ N we have d(xi, xj) < ε. A convergent
sequence is a list such that the further down the list we go, the closer the xi’s get to some limit `: For every ε > 0 there is some
N > 0 such that for all i ≥ N we have d(xi, `) < ε. Note that convergent sequences are always Cauchy. However, the converse
may fail if our space is incomplete. For example, the sequence 3, 3.1, 3.14, 3.141, . . . is Cauchy in Q, but not convergent since
its limit is irrational (i.e., π 6∈ Q). So Q is incomplete whereas R is complete – this is almost how R gets derived from Q!

2A pun yet true.
3Functional analysis begins with a study of these structures (inner product, normed, and metric spaces). Also, infinite

dimensional Hilbert spaces play a big role in quantum mechanics.
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Differentiability: We will deal with differentiability more carefully later. Essentially a function f between
subsets of Rn and Rm is differentiable at x0 if f can be well approximated by a linear function near x0.
This means there is some linear transformation Jx0 from Rn to Rm such that

lim
x→x0

f(x)− [f(x0) + Jx0(x− x0)]

‖x− x0‖
= 0

where the limit is defined in the “usual” way.4 This linear transformation Jx0 is called the Jacobian of f
(evaluated at x0). The Jacobian is our (first) derivative. More on this later.

Looks Like / Mappings: When mapping between structured spaces, we would like our functions to carry
over (i.e., preserve) some of that structure. Generally structure preserving maps are called homomorphisms
(or morphisms). An invertible (i.e., one-to-one and onto) morphism whose inverse is also a morphism is
called an isomorphism.5

When dealing with vector spaces, we call our morphisms linear transformations. In particular, a
function T between vector spaces is linear if for any input vectors v,w and scalar s, we have

T (v + w) = T (v) + T (w) and T (sv) = s T (v)

If T is a linear map from a vector space to itself, we say T is a linear operator. For example, the derivative
is a linear operator on the space of smooth functions.

In the context of inner product spaces, an invertible linear transformation that preserves inner products
is an isomorphism. For the dot product, this looks like: T (v) •T (w) = v •w. Such a mapping would be
angle and length preserving. For isomorphisms of normed spaces, we want invertible linear maps that
preserve lengths: ‖T (v)‖ = ‖v‖. For metric spaces, isomorphisms are invertible maps (not necessarily
linear) that preserves distances:

d(T (x), T (y)) = d(x,y)

For inner product, normed, and metric spaces we call isomorphisms isometries.

Topological spaces again are kind of weird. A morphism between topological spaces is called a contin-
uous function. It turns out that the “right” way to preserve structure is to ask that inverse images of open
sets are open. An invertible continuous map with a continuous inverse is called a homeomorphism. When
working with Rn, we can be a bit more direct.

Given a function f defined on a subset of Rn mapping into Rm, we say f is continuous at x0 (some point
in our domain) if given any ε > 0 there is some δ > 0 such that f(Bδ(x0) ∩ (domain of f)) ⊂ Bε(f(x0)).
In other words, for every ε > 0 there is some δ > 0 such that whenever x is in the domain of f and
d(x,x0) < δ we have d(f(x), f(x0)) < ε (i.e., the traditional ε-δ definition of continuity). Finally, a
function is continuous if it is continuous at every point in its domain.

When working with structures where we have a concept of differentiability, we say that an invertible
differentiable map with differentiable inverse is called a diffeomorphism.

We also have local versions of various concepts. For example, if f is an invertible continuous function
from an open set containing x0 onto an open set and f ’s inverse is continuous, then f is a local homeomor-
phism (at x0). If you replace “continuous” with “differentiable”, f becomes a local diffeomorphism.

4We have lim
x→x0

g(x) = L if for every ε > 0 there is some δ > 0 such that for any x in the domain of g with 0 < d(x,x0) < δ

we have d(g(x),L) < ε. One usually only considers limits as x goes to x0 if g is defined on points arbitrarily close to but
distinct from x0 (i.e., x0 is a limit point or accumulation point of the domain of g).

5With some structures, an invertible morphism’s inverse will automatically preserve structure (i.e., the inverse of a morphism
is a morphism). This is true for vector, normed, and inner product spaces. However, this can fail in the context of topological
and metric spaces – there are invertible continuous maps with discontinuous inverses! For example, f : [0, 2π) → S1 (a half
open interval of real numbers mapped to the unit circle) defined by f(θ) = (cos(θ), sin(θ)) is continuous and invertible but its
inverse fails to be continuous at (1, 0) ∈ S1 (the angle jumps there).
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