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Definition: Let R be a commutative ring with 1. We call a map ∂ : R → R a derivation if ∂(a+ b) = ∂(a)+ ∂(b)
and ∂(ab) = ∂(a)b + a∂(b) for all a, b ∈ R. A ring equipped with a particular derivation is called a differential ring.
For convenience, we write ∂(a) = a′ (just like in calculus). If R is a differential ring and an integral domain, it is a
differential integral domain. If R is a differential ring and a field, it is a differential field.

Let R be a differential ring.

� 1′ = (1 · 1)′ = 1′ · 1 + 1 · 1′ so 1′ = 1′ + 1′ and so 0 = 1′. Notice that ∂ is a group homomorphism (consider R as
an abelian group under addition), so ∂(na) = n∂(a) for all a ∈ R and n ∈ Z. Therefore, ∂(n1) = n∂(1) = n0 = 0.
Thus everything in the prime subring is a constant (i.e. has derivative zero).

� Given a ∈ R, notice that (a2)′ = (a · a)′ = a′a+ aa′ = 2aa′. In fact, we can prove (using induction), that

(an)′ = nan−1a′ for any n ∈ Z≥0 (The power rule)

� Let a ∈ R× (a is a unit). Then 0 = 1′ = (aa−1)′ = a′a−1 + a(a−1)′ so a(a−1)′ = −a−1a′. Dividing by a, we get
that (a−1)′ = −a−2a′. Again, using induction, we have that (an)′ = nan−1a′ for all n ∈ Z (if a−1 exists).

� Let a ∈ R and b ∈ R×. Then (ab−1)′ = a′b−1 + a(b−1)′ = a′b−1 + a(−b−2b′). Therefore,

∂
(a
b

)
=

a′b− ab′

b2
(The quotient rule)

This then implies that if Q ⊆ R, every element of Q is a constant.

Note: If R is a differential integral domain, then R’s field of fractions F can be turned into a differential field in
a unique way. We define ∂(a/b) via the quotient rule. It is a simple exercise to show that this is well defined,
extends the definition of ∂ from R to F, and there is no other way to do this.

Definition: A differential subring of a differential ring R, is a subring (containing 1) which is closed under
differentiation. Thus S ⊆ R is a differential subring if 1 ∈ S, a, b ∈ S implies that a− b, ab, and a′ ∈ S.

Likewise, a differential ideal of R is an ideal that is closed under differentiation. If I is a differential ideal of R,
R/I becomes a differential ring if we define ∂(a+ I) = ∂(a) + I (it’s easy to show that this is well defined).

A differential homomorphism between two differential rings R,S is a map φ : R → S which is a ring homomor-
phism (i.e. φ(a+ b) = φ(a) + φ(b), φ(ab) = φ(a)φ(b), and φ(1) = 1) that preserves differentiation (i.e. φ(a′) = φ(a)′).
It’s easy to show that the kernel of a differential homomorphism, ker(φ) = {x ∈ R | φ(x) = 0}, is a differential ideal of
the domain. Also, the image is a differential subring of the codomain and the isomorphism theorems all hold.

Lemma: Let R be a differential ring. The constants of R is the differential subring C = ker(∂) = {x ∈ R | x′ = 0}.
Moreover, if R is a differential field, then C is a differential subfield.

Proof: First, 1 ∈ C since 1′ = 0. Next, suppose a, b ∈ C. Then (a − b)′ = a′ − b′ = 0 − 0 = 0 and (ab)′ = a′b + ab′ =
0b+ a0 = 0 so a− b, ab ∈ C. Finally, for all a ∈ C, a′ = 0 ∈ C. So C is a differential subring. Now in addition, suppose
R is a field. Let a ∈ C such that a ̸= 0. Then (a−1)′ = −a−2a′ = −a−20 = 0 so a−1 ∈ C. Thus C is a field. ■

Example: Any commutative ring with 1 is a differential ring when given the derivation ∂ = 0. In particular, Q is a
differential ring with ∂ = 0 and by some of the above discussion, this is our only choice!

The field of rational functions with real coefficients, R(x), is a differential field when given ∂ =
d

dx
(the usual

derivative). Here the field of constants is R (as we would expect).
It is interesting (and strange) to consider that Q(π) (which is isomorphic to Q(x)) is a differential field when given

the derivation ∂ = “d/dπ”. In other words, π′ = 1 and (π3)′ = 3π2 etc. This indicates that R can be turned into a
differential field in many very strange ways.

Lemma: Let F be a differential field of characteristic 0 and let K/F be an algebraic extension (as regular old fields).
The derivation on F can be extended to a derivative on K in exactly one way (i.e. K can be turned into a differential
field and this can only be done in one way).

Proof: [Sketch] I’ll just show uniqueness. For a complete proof see [Crespo & Hajto] Proposition 5.3.1.
Let α ∈ K and let f(x) ∈ F[x] be the minimal polynomial for α over F (every element in an algebraic extension

is by definition algebraic). Let Df(x) be the formal derivative of our polynomial f(x) (treating the coefficients like
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constants). Then f(x) and Df(x) are relatively prime (f(x) is irreducible and Df(x) has lower degree and is non-zero
since F has characteristic 0). This means that Df(α) ̸= 0.

Consider f(x) = xn+an−1x
n−1+ · · ·+a0. Then (f(x))′ = nxn−1x′+(a′n−1x

n−1+(n−1)an−1x
n−2x′)+ · · ·+(a′1x+

a1x
′) + a′0. Therefore, (f(x))

′ = Df(x)x′ + g(x) where g(x) = a′n−1x
n−1 + · · ·+ a′1x+ a′0. Now α is the root of f(x), so

we must have (f(α))′ = 0. In other words, 0 = Df(α)α′ + g(α). So the only consistent way to define α′ is
g(α)

Df(α)
. ■

Example: We know that the only derivation on Q is zero. Consider
√
5 ∈ Q[

√
5]. As in the above proof, we can

figure out what the derivative of
√
5 must be from its minimal polynomial. (

√
5)2 − 5 = 0 so 2(

√
5)(

√
5)′ − 0 = 0 and

thus (
√
5)′ = 0/(2

√
5) = 0 (as we might have guessed).

Even more can be said. Notice in the above proof, if α is algebraic over F’s constants (i.e., 0 = f(α) = anα
n+ · · ·+a0

where an, . . . , a0 are constant), then g(x) = a′nx
n + · · ·+ a′0 = 0. Thus we must have α′ = g(α)/Df(α) = 0. Therefore,

any element that is algebraic over the constants, is itself a constant. In particular, the only possible derivation on the
field of algebraic numbers (i.e., Q) is ∂ = 0.

Definition: Let F be a differential field. We call F(t)/F a logarithmic extension if there exists some s ∈ F such

that t′ =
s′

s
. Similarly we call F(t)/F an exponential extension if there exists some s ∈ F such that t′ = ts′.

These definitions mimic the defining properties of the natural logarithm and the exponential function. Suppose that

t′ =
s′

s
and we could “integrate”. Then t =

∫
t′ =

∫
s′

s = ln(s). Likewise, solving the “differential equation” t′ = ts′

would give us t = es. The above definitions yield formal characterizations of these functions without requiring us to
work with actual fields of functions (or dealing with actual real or complex variables).

Definition: Let F be a differential field with field of constants C (= ker(∂)). A differential field extension E/F is
an elementary extension if there exists a tower of differential fields (where all fields have the same constants):

F = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fℓ = E
such that each extension Fj+1/Fj is either an algebraic, logarithmic, or exponential extension.
If F = C(x) (thought of as actual rational functions in a single complex variable), then E is defined to be the collection

of all complex functions which lie in some elementary extension of C(x) (we allow these functions to have domains which
aren’t all of C). E is the field of elementary functions.

Example: Essentially elementary functions are the functions that can be built from C and f(x) = x using algebra,

exponentiation, and taking logarithms. For example: f(x) =

√
e

3√x5+1 − 7

ln(x15 +
√
x4 − 1) + ln(e1/x − 6)

is elementary.

Keep in mind that elementary functions also include some functions which may be unfamiliar to us. For example:
The Bring radical is BR(a) is the unique real root of the polynomial x5 + x + a (then extend BR(a) analytically to
a function of a complex variable). Because Y = BR(x) is a root of the equation Y 5 + Y + x = 0, we have that
C(x)(BR(x)) is an elementary extension of C(x) and so BR(x) is an elementary function. By the way, for Y = BR(x),

0 = (Y 5 + Y + x)′ = 5Y 4Y ′ + Y ′ + 1 so Y ′ = − 1

5Y 4 + 1
. Thus BR′(x) = − 1

5 · BR(x)4 + 1
.

Example: What about trigonometric functions? The trig functions can be built from log’s and exponential’s. For

example: sin(x) =
eix − e−ix

2i
and cos(x) =

eix + e−ix

2
. Then tan(x), sec(x), csc(x), and cot(x) can be built from sine

and cosine. Inverse trig functions? For example: arcsin(x) = −i ln(ix+
√
1− x2), arccos(x) = −i ln(x+

√
x2 − 1), and

arctan(x) =
i

2
(ln(1− ix)− ln(1 + ix)). The other inverse functions have similar looking formulas.

This means that functions like f(x) = etan(
√
x) ln(sin(x) + sec5(e

√
x)) are elementary.

We should be careful. By definition, elementary functions include all algebraic functions. They are closed under alge-
braic operations (for example: addition, multiplication, taking roots). They are also closed under function composition.
However, they are not closed under function inverses. For example, f(x) = xex under proper restrictions of domain can
be inverted. One such branch of f−1(x) is called the Lambert W -function W (x). Even though xex is elementary, W (x)
is not. See [Ritt2] for a characterization of when an inverse of an elementary function is still elementary.

Now let’s prove Liouville’s theorem which characterizes which functions live in an elementary extension. We will
follow the proof as presented in [Rosenlicht].
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Lemma: Let F be a differential field with differential field extension F(t). Suppose that F(t) and F have the same
constants (i.e. the kernels of the derivations match) and that t is transcendental over F.

1. Let t′ ∈ F and f(t) ∈ F[t] with deg(f(t)) > 0. Then (f(t))′ ∈ F[t] and deg(f(t)) = deg((f(t))′) iff the leading
coefficient of f(t) is non-constant. If the leading coefficient of f(t) is constant, then deg((f(t))′) = deg(f(t))− 1.

2. Let t′/t ∈ F. Then for all a ∈ F×, n ∈ Z̸=0, (atn)′ = htn for some h ∈ F×. Moreover, if f(t) ∈ F[t] with
deg(f(t)) > 0, then deg(f(t)) = deg((f(t))′). Also, (f(t))′ = cf(t) for some c ∈ F iff f(t) is a monomial.

Proof: Let f(t) = ant
n + an−1t

n−1 + · · ·+ a0 ∈ F[t] with an ̸= 0 so that deg(f(t)) = n > 0.
For item 1, (f(t))′ = a′nt

n + (nant
′ + a′n−1)t

n−1 + ((n − 1)an−1t
′ + a′n−2)t

n−2 + · · · + (a1t
′ + a′0). Notice that the

coefficients all lie in F since we have assumed t′ ∈ F (if aj ∈ F, then a′j ∈ F because F is a differential field).
Recall that an is non-constant iff a′n ̸= 0 (by definition). Thus the degree does not drop iff the leading coefficient

is not constant. In the case that it is, we have a′n = 0. Suppose that (nant
′ + a′n−1) = 0 (i.e. the coefficient of tn−1 is

zero). This implies that (nant+an−1)
′ = na′nt+nant

′+a′n−1 = nant
′+a′n−1 = 0 (we are assuming a′n = 0). Therefore,

nant+ an−1 = c for some constant c ∈ F. Since nan ̸= 0 and nan, an−1 ∈ F, we have t is algebraic over F (contradicting
our hypothesis that t is transcendental over F). Thus (nant′ + a′n−1) ̸= 0 and so the degree of (f(t))′ is n− 1.

For item 2, let t′/t = b ∈ F. Let a ∈ F×. Then (atn)′ = a′tn + natn−1t′ = (a′ + nab)tn since t′ = bt. If a′ + nab = 0,
then atn would be constant. So t would satisfy the polynomial aXn + c for the constant c = −atn. Since a ̸= 0 and
a, c ∈ F, this would mean that t is algebraic over F (again, a contradiction). Therefore, a′ + nab ̸= 0 (i.e. (atn)′ = htn

where h = a′ + nab ∈ F×).
Notice that our calculation above shows that each non-zero term of f(t) yields a non-zero term (of the same degree)

in (f(t))′. Thus deg(f(t)) = deg((f(t))′). Also, if f(t) is a non-zero monomial, say f(t) = atn, the above calculation
says that (atn)′ = htn so (f(t))′ = cf(t) where c = h/a ∈ F×.

Conversely, suppose that (f(t))′ = cf(t) for some c ∈ F. Then the above calculations say that c = h/aj =

(a′j + jajb)/aj for all aj ̸= 0. Suppose that am, aℓ ̸= 0 (where m ̸= ℓ). Then
a′m +mamb

am
=

a′ℓ + ℓaℓb

aℓ
. That

means (a′ℓ + ℓaℓb)am = (a′m +mamb)aℓ. Therefore,

(
amtm

aℓtℓ

)′

=
(a′m +mamb)aℓt

m+ℓ − (a′ℓ + ℓaℓb)amtm+ℓ

a2ℓ t
2ℓ

= 0. Thus

amtm

aℓtℓ
= z for some constant z ∈ F. Therefore, amtm − zaℓt

ℓ = 0 (t satisfies a non-zero polynomial over F). Thus t is

algebraic over F (again, a contradiction). Therefore, at most one coefficient is non-zero (i.e. f(t) is a monomial). ■

We can now give Liouville’s theorem which characterizes which “functions” in F can be “integrated” in terms of
elementary functions.

Theorem: (Liouville) Let F be a differential field of characteristic 0. Let α ∈ F. If y′ = α has a solution y in an
elementary extension of F (with the same constants), then there exists constants c1, . . . , cn and elements u1, . . . , un, v ∈ F
such that

α = v′ + c1
u′
1

u1
+ c2

u′
2

u2
+ · · ·+ cn

u′
n

un

Proof: Suppose that y =
∫
α, a solution of y′ = α is elementary over F. This implies that there exists a tower of

differential fields: F ⊆ F(t1) ⊆ F(t1, t2) ⊆ · · ·F(t1, t2, . . . , tN )

such that all of these fields have the same constants, y ∈ F(t1, . . . , tN ), and each ti is either algebraic, logarithmic, or
exponential over F(t1, . . . , ti−1).

Use proof by induction. If N = 0, y ∈ F and thus α = y′ ∈ F so we’re done. Suppose the result is true for any
tower of height N − 1. Notice that the tower with F deleted is N − 1 steps tall. Therefore, by induction, there exists

constants c1, . . . , cn and elements u1, . . . , un, v ∈ F(t1) such that α = v′ +
n∑

i=1

ci
u′
i

ui
. We need to get elements in F (not

F(t1)). To do this we consider several cases: t1 is algebraic or transcendental (then when t1 is transcendental it must
be either logarithmic, or exponential).

Case 1: Suppose t1 = t is algebraic over F. There exists some non-zero polynomials in F[t] such that ui = Ui(t) and
v = V (t). Consider the distinct conjugates of t in some algebraic closure of F(t) [or some splitting field over F(t)] say
t = τ1, τ2, . . . , τs. Now E = F(τ1, . . . , τs) is an algebraic extension of F so it extends uniquely as a differential field. There
is an automorphism of E fixing F such that t = τ1 maps to τj (this is the very definition of a “conjugate”), call this map
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σj , then we have α = σj(α) = σj

(
V (t)′ +

n∑
i=1

ci
U ′
i(t)

Ui(t)

)
= V (τj)

′ +
n∑

i=1

ci
U ′
i(τj)

Ui(τj)
(because α and all of the coefficients in

the polynomials Ui and V lie in F and so are fixed by σ).
Now we “symmetrize”! Add up all of these conjugate expressions and divide by s (note that s−1 exists because we

are working in characteristic 0). First, note that by “logarithmic differentiation” we have:

(A1 · · ·As)
′

A1 · · ·As
=

A′
1(A2 · · ·As) + (A1)A

′
2(A3 · · ·As) + · · ·+ (A1 · · ·As−1)A

′
s

A1 · · ·As
=

A′
1

A1
+ · · ·+ A′

s

As

Therefore, symmetrizing yields:

α =
1

s

s∑
j=1

α =
1

s

s∑
j=1

σj(α) =
1

s

s∑
j=1

(
V (τj)

′ +

n∑
i=1

ci
U ′
i(τj)

Ui(τj)

)
=

1

s

s∑
j=1

V (τj)
′ +

n∑
i=1

ci
s

(Ui(τ1) · · ·Ui(τs))
′

Ui(τ1) · · ·Ui(τs)

Notice both 1
s (V (τ1)

′+· · ·+V (τs)
′) and

(Ui(τ1) · · ·Ui(τs))
′

Ui(τ1) · · ·Ui(τs)
are fixed by all automorphisms because they are symmetric.

Hence, each of these lies in the ground field F. Letting v =
1

s
(V (τ1)+ · · ·+V (τs)) and ui = Ui(τ1) · · ·Ui(τs) we’re done.

Case 2: Suppose that t1 = t is transcendental F. Again we have v, u1, . . . , un ∈ F(t1) = F(t). But now, since t is
transcendental, we need to consider rational polynomials in t with coefficients in F. Such polynomials can be factored
and for any w = ui we can get w = a1(t)

k1 · · · aℓ(t)kℓ · b where ai(t) ∈ F[t] is monic and irreducible, kj ∈ Z̸=0 (positive
and negative powers), and b ∈ F×. Again, using logarithmic differentiation we have

w′

w
=

(ba1(t)
k1 · · · aℓ(t)kℓ)′

ba1(t)k1 · · · aℓ(t)kℓ
=

b′

b
+ k1

a′1(t)

a1(t)
+ · · ·+ kℓ

a′ℓ(t)

aℓ(t)

So without loss of generality we can assume each ui is either a monic irreducible a(t) ∈ F[t] or an element of F.
As for v, decompose it into its partial fraction decomposition. After possibly a polynomial term, each term in the

fractional part of this decomposition is of the form
g(t)

f(t)r
for some monic irreducible f(t) ∈ F[t] and some g(t) ∈ F[t]

where deg(g(t)) < deg(f(t)).
Case 2A: Suppose that (in addition to being transcendental) t is logarithmic over F. This means that there exists

some a ∈ F× such that t′ =
a′

a
. Thus t′ = a′/a ∈ F. By our lemma, if f(t) ∈ F[t], then (f(t))′ ∈ F[t] and (f(t))′ has

degree 1 less than that of f(t). Since f(t) is irreducible (and the F is separable since it has characteristic 0), (f(t))′ and
f(t) must be relatively prime. Notice that(

g(t)

f(t)r

)′

=
(g(t))′(f(t))r − g(t)r(f(t))r−1(f(t))′

(f(t))2r
=

(g(t))′

(f(t))r
− rg(t)(f(t))′

(f(t))r+1

Now deg(g(t)) and deg((f(t))′) are both less than deg(f(t)). This along with the fact that f(t) is irreducible implies
that f(t) does not divide g(t) or (f(t))′. Therefore, the partial fraction decomposition of v′ involves a term with the
denominator (f(t))r+1. Thus this appears in α’s partial fraction decomposition. But α ∈ F so it has no fractional
part to its decomposition (it’s already its own decomposition). Thus such terms cannot appear in v’s decomposition.
Likewise, they cannot appear in the ui’s either. Therefore, u1, . . . , un ∈ F and v = V (t) ∈ F[t] (a polynomial in t – that
is – v has no fractional part).

At this point we have, α = (V (t))′ −
n∑

i=1

ci
u′
i

ui
where ci, ui, u

′
i, and α all lie in F. Therefore, (V (t))′ ∈ F. Hence

v = V (t) = ct+ d for some c, d ∈ F. But v′ has degree 0, so c must be a constant. Therefore, (V (t))′ = c
a′

a
+ d′ where

a, d ∈ F and c is a constant. We then have

α = d′ + c
a′

a
+

n∑
i=1

ci
u′
i

ui

just as we wanted.

Case 2B: Suppose that (in addition to being transcendental) t is exponential over F. This means
t′

t
= b′ for some

b ∈ F. Recall that our lemma says, deg(f(t)) = deg((f(t))′) and f(t) divides (f(t))′ only if f(t) is a monomial. So if
f(t) is monic irreducible and f(t) ̸= t, then f(t) is not a monomial and so f(t) does not divide (f(t))′. As before, if

f(t) ̸= t, then
(f(t))′

f(t)
can be written as a polynomial in t plus a proper fraction with denominator f(t). We are led to

the same contradiction since if
g(t)

(f(t))r
appears in the partial fraction decomposition of v, then v′ will have a term in
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it’s decomposition with denominator (f(t))r+1, so this appears in the decomposition of α ∈ F (which has no fractional
part). The same applies to the ui’s. Therefore, the only fractional parts that can appear must have denominators
f(t)m = tm. This implies that v = V (t) =

∑
ajt

j for some aj ∈ F where the sum ranges over a finite set of integers
(some powers can be negative). Likewise, all ui ∈ F with a possible exception of some ui = t, without loss of generality,

say u1 = t. Then
n∑

i=1

ci
u′
i

ui
= c1

t′

t
+

n∑
i=2

ci
u′
i

ui
. But

t′

t
= b′ ∈ F. Therefore, again (V (t))′ = α− c1b

′ −
n∑

i=2

ci
u′
i

ui
∈ F. Recall

that (atn)′ = htn for some h ∈ F×. But (V (t))′ has no t terms (it belongs to F), thus V (t) = at0 = a ∈ F×. Therefore,

α = c1
t′

t
+

n∑
i=2

ci
u′
i

ui
+ v′ = (c1b+ v)′ +

n∑
i=2

ci
u′
i

ui
as desired. ■

Now with Liouville’s theorem in hand, we can show that various functions are not elementary functions. This means
that we “cannot integrate” them (well, we can’t integrate them and get a formula for the antiderivative written in terms
of elementary functions).

Corollary: Let f(x), g(x) ∈ C(x) be nonzero and suppose that g(x) is also non-constant. Then∫
f(x)eg(x) dx is elementary if and only if f(x) = a′(x) + a(x)g′(x) for some a(x) ∈ C(x).

Proof: We will suppress the variable x and write f = f(x), g = g(x), etc. Let F = C(x) and t = eg so that we have
t′/t = g′ (i.e. F(t) is an exponential extension). Also, since g is non-constant, F(t) is a pure transcendental extension of
F. Suppose that

∫
feg dx =

∫
ft dx is elementary, by Liouville’s theorem we can write

ft = v′ +

n∑
i=1

ci
u′
i

ui
for some v, u1, . . . , un ∈ F(t) and c1, . . . , cn ∈ C.

As in the proof of Liouville’s theorem, we can factor each ui ̸∈ F into a power product of irreducible elements of F[t]
and then using logarithmic differentiation, we can guarantee (at the expense of a possibly longer summation) that each
of ui ̸∈ F is distinct, monic, and irreducible.

Now imagine that v has been expanded in its partial fraction decomposition (with respect to the ring F[t]). If

this decomposition of v had some (nonzero) term
a

bk
(necessarily with deg(a) < deg(b) and k ∈ Z>0 as this is part

of what it takes to be a term in a partial fraction decomposition), then when computing v′ we would have a term
a′bk − akbk−1b′

b2k
=

a′

bk
− k

ab′

bk+1
. Notice that v′ = ft −

∑
ciu

′
i/ui where the ui’s of degree > 0 are distinct, monic, and

irreducible and only appear in denominators raised to the first power. This means that either a′bk − akbk−1b′ = 0 (i.e.
(a/b)′ = 0) or k = 1 (i.e. only the first power of b can possibly appear in the denominator).

Now if k = 1, we have
a′

b
− ab′

b2
and thus the second term cannot be unreduced (after reducing we can only have

the first power of b appearing) so b must divide −ab′ (in F[t]). Now b is irreducible so b either divides −a or b′. But
deg(a) < deg(b), so b must divide b′. However, by our lemma, part 2, deg(b) = deg(b′), this means that b′ = cb for some
c ∈ F. Again by our lemma, b must be a monomial. It’s irreducible, monic, and monomial so b = t.

On the other hand, a′bk − akbk−1b′ = 0 and so a′b = kab′. Thus b divides kab′ so as in the paragraph above we
will be led to conclude that b = t. Therefore, the only fractional terms in the partial fraction decomposition of v have
denominators bk = tk. Thus v =

∑
pjt

j for some pj ∈ F (the sum ranging over a finite set of integers).
Now turning back to the ui’s. Notice that

∑n
i=1 ciu

′
i/ui = ft − v′ = ft −

∑
pjt

j and uj is either in F or monic
irreducible. Thus the only possible ui ̸∈ F would be ui = t. In this case, u′

i/ui = t′/t ∈ F. Thus
∑n

i=1 ciu
′
i/ui ∈ F.

At this point we have ft = v′ +
∑n

i=1 ci
u′
i

ui
=
∑

p′jt
j +

∑
pjjt

j−1t′ + q where q =
∑

i u
′
i/ui ∈ F. Recall that

t′/t = g′ ∈ F so ft =
∑

p′jt
j +

∑
jpjg

′tj + q. Comparing coefficients of t1, we get f = p′1 + 1p1g
′. Letting a = p1 (∈ F),

we have f = a′ + ag′ as desired.
Conversely, suppose that f = a′ + ag′ for some a ∈ F. Then

∫
feg =

∫
(a′ + ag′)eg = aeg. ■

Example:
∫

ex
2

dx is not elementary. In our corollary, this goes with f(x) = 1 and g(x) = x2. So if it

were elementary, we would have a solution a(x) ∈ C(x) for 1 = a′(x) + 2xa(x). Consider a(x) = p(x)/q(x) for
some p(x), q(x) ∈ C[x] and q(x) ̸= 0. Without loss of generality, assume p(x) and q(x) are relatively prime. Then

1 =
p′(x)q(x)− p(x)q′(x)

q(x)2
+ 2x

p(x)

q(x)
. Clearing denominators we get q(x)2 = p′(x)q(x) − p(x)q′(x) + 2xp(x)q(x). In
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other words, q(x)(q(x)− 2xp(x)− p′(x)) = −p(x)q′(x). Notice that if q(x) has a root, say r, then p(r) ̸= 0 (since p(x)
and q(x) are relatively prime). But q(x)(q(x)− 2xp(x)− p′(x)) = −p(x)q′(x) so if q(x) has a factor (x− r)k then q′(x)
must have the same factor! This is impossible (q′(x) must have one less factor). Thus q(x) cannot have any roots (i.e.
q(x) = c is constant). But then we have a(x) = p(x)/c so a(x) must be a polynomial. But then looking at degrees we
have 0 = deg(1) = deg(a′(x) + 2xa(x)) = deg(a(x)) + 1 (contradiction). Hence, no such a(x) exists. Thus our integral

is not elementary. This means that the error function: erf(x) = (2/
√
π)
∫ x

0
et

2

dt isn’t elementary.

Example:
∫

ex

x
dx is not elementary. In our corollary, this goes with f(x) = 1/x and g(x) = x. So if it were

elementary, we would have a solution a(x) ∈ C(x) for 1/x = a′(x)+1a(x). In other words, 1 = x(a′(x)+a(x)). If a(x) =
p(x)/q(x) is again written in lowest terms, a′(x) = (p′(x)q(x) − p(x)q′(x))/q(x)2 and so after clearing denominators
q(x)2 = x[p′(x)q(x)−p(x)q′(x)+p(x)q(x)]. Suppose that q(x) has some root r ̸= 0 with multiplicity k, then xp(x)q′(x) =
q(x)[xp′(x)+p(x)−q(x)] and again we reach the same kind of contradiction as in the example above. Thus the only root
q(x) can have is 0. Since q(x)2 = x[p′(x)q(x)−p(x)q′(x)+p(x)q(x)], 0 is a root (and must be repeated). Thus q(x) = cxk

for some k > 1. Then, xk(ckp(x)) = xp(x)kcxk−1 = xp(x)q′(x) = q(x)[xp′(x) + p(x)− q(x)] = cxk[xp′(x) + p(x)− cxk]
and so kp(x) = xp′(x) + p(x)− cxk and thus (k− 1)p(x) = xp′(x)− cxk so that p(x) has 0 as a root. But then p(x) and
q(x) aren’t relatively prime (contradiction). Thus our integral is not elementary.

This also implies that the real and imaginary parts of this integral are not elementary. Therefore, the sine integral
function Si(x) =

∫ t

0
sin(t)/t dt isn’t elementary.

Example:
∫

1

ln(x)
dx is not elementary. Let u = ln(x) (so eu = x) then du = 1/x dx so that

∫
1/ ln(x) dx =∫

x/(x ln(x)) dx =

∫
eu/u du. Thus if the integral of 1/ ln(x) were elementary, then

∫
ex/x dx would be too – which

it isn’t!

The above proof of Liouville’s theorem was drawn from the article [Rosenlicht]. Additional examples of non-
elementary integrals as well as some more details about our examples can be found in the article [Mead]. The books
[Kaplansky] and [Ritt1] are classical introductions to differential algebra whereas [Magid] and [Crespo & Hajto] give
more modern introductions to the subject.

It turns out that there is a complete algorithm for determining when a function can be integrated in terms of
elementary functions. This is the so called “Ricsh Algorithm” developed by Robert Risch in the late 60’s. For an
excellent, very readable, introduction to this as well as more details about results like Liouville’s theorem, I highly
recommend [Geddes].
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