
Math 4010/5160 Characterizing R and C Complex Variables

To get a better feeling for what makes C (the complex numbers) so special, let’s take a look at why in the end
we are almost forced to study R (the real numbers) in the first place.

To begin, we very naturally want to have a way to describe cardinal (more or less: size) and ordinal (more or
less: ordering) information. The positive integers, Z>0 = {1, 2, . . . } do both of these things for us. The number 3
both stands in for having 3 things (like “a, b, c” is a list of “3” letters) and being in 3rd place (“c” is letter number
“3” in this list). People have been using these kinds of numbers for as long as there have been people.

Next, people needed to deal with parts of a whole, so they developed fractions. But this wasn’t enough, we needed
irrational quantities too. For example: In a 45◦-45◦-90◦ triangle with legs of length 1, the hypotenuse’s length is

√
2.

By the time of the Greek’s, it was known that this number cannot be expressed as the ratio of two whole numbers.
Fast forward and 0 is introduced in India. While negative numbers experienced some acceptance in China, they
were mostly refused (in the Western world) until Fibonacci’s time. Fibonacci used negative numbers himself and
advocated that they were useful in finance (positive = credit, negative = debt).

So by the end of the Renaissance, the Western world saw the need for and usefulness of a number system which
allowed addition, subtraction, multiplication, and division. The concept of a field (which came later) is the abstract
characterization of such a numeric system.

Definition: Let F be a non-empty set equipped with two operations: + : F × F → F denoted a + b for a, b ∈ F
and · : F× F→ F denoted a · b or ab for a, b ∈ F. [We have already required closure: If a, b ∈ F, then a + b, ab ∈ F.]
We also require that the following properties hold:

Associativity: For all a, b, c ∈ F, (a + b) + c = a + (b + c) and (ab)c = a(bc).

Identity: There are special elements 0, 1 ∈ F such that 0 6= 1 and for all a ∈ F, 0 + a = a = a + 0 and 1a = a = a1.

Inverses: For each a ∈ F there is some −a ∈ F such that (−a) + a = 0 = a + (−a). If in addition, a 6= 0, there
exists a−1 ∈ F such that a−1a = 1 = aa−1.

Commutativity: For all a, b ∈ F, a + b = b + a and ab = ba.

Distribution: For all a, b, c ∈ F, (a + b)c = ac + bc and a(b + c) = ab + ac.

Such a system, F, is called a field.

We can see that the rational numbers (Q), real numbers (R), and complex numbers (C) are all examples of fields.
Of course, there are other examples of fields that look less familiar. For example, Zp (integers modulo a prime p)
and R(x) (rational functions with real coefficients) both form fields. This means that the real numbers must possess
other structure which makes them stand out.

Definition: Let F be a field equipped with a relation ≤. Suppose that the following properties hold:

Reflexive: For all a ∈ F, a ≤ a.

Antisymmetric: For all a, b ∈ F, if a ≤ b and b ≤ a, then a = b.

Transitive: For all a, b, c ∈ F, if a ≤ b and b ≤ c, then a ≤ c.

Then ≤ is called a partial order. If in addition, for every a, b ∈ F we have either a ≤ b or b ≤ a, then ≤ is called a
total order. Suppose that ≤ is a total order and for all a, b, c ∈ F we have that a ≤ b implies a + c ≤ b + c as well
as 0 ≤ a and 0 ≤ b implies that 0 ≤ ab. Then we call F an ordered field.

Define a < b to mean a ≤ b but a 6= 0 and a ≥ b if b ≤ a and a > b if b < a. We say a is positive if a > 0
and negative if a < 0. It isn’t hard to prove that negative times negative is positive and positive times positive is
positive. It isn’t hard to show that 1 > 0. This then implies that 0 = 1 − 1 > 0 − 1 = −1. I won’t go into more
details, but essentially the relations ≤, <, etc. work just like we think they should. Notice that Q and R are ordered
fields with the usual inequality operators.

It is worth mentioning that once we have an ordering, we also have topology: we can discuss limits and continuity.
For example: For an ordered field F, we can define intervals such as (a, b) = {x ∈ F | a < x < b}, [a, b] = {x ∈ F | a ≤
x ≤ b}, (a,∞) = {x ∈ F | a < x}, etc. Open intervals then form a basis for a topology on F. This means we can
start to do some analysis and not just algebra.

Another consequence of being ordered is that 1, 1 + 1 = 2, 1 + 1 + 1 = 3, . . . must all be positive. In particular,
1 + 1 + · · ·+ 1 6= 0. This means that an ordered field must have characteristic 0. For example: This means that the
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fields Zp cannot be ordered in a way compatible with its arithmetic. On the other hand, any field of characteristic 0
0 must contain an isomorphic copy of Q (the converse is also true).

Now is a good time to mention that C cannot be ordered either. While C is a field of characteristic 0, we have a
problem with i. Suppose that C were ordered. Then either i > 0 or i < 0. But in either case, −1 = i2 > 0 (which is
impossible). The crux is the problem is that C has elements other than ±1 with finite multiplicative order.

Now that we realize C does not have an ordered field structure, we can see why people balked at using the complex
numbers for so long. If we think of ordering and magnitude as essential to being a number, then “things” such as
i =
√
−1 cannot be “numbers”. This leads to name calling: i is “not real” and/or “imaginary”. How sad.

Let us return to characterizing R. So far we’ve ruled out some fields by looking at orderings, but we still have
that both Q and R are ordered fields. This is where analysis comes into play. The real numbers have an additional
property:

Definition: Let F be an ordered field and S ⊆ F. If m ∈ F and m ≤ x for all x ∈ S, we say that m is a lower
bound for S. If S has a lower bound, then S is bounded below. Likewise, we could define upper bound and
bounded above. If S is bounded both above and below, then S is bounded.

Next, suppose that g is a lower bound for S such that given any other lower bound m, we have m ≤ g. In other
words, if g ≤ x for all x ∈ S and if m ≤ x for all x ∈ S, then m ≤ g. Then g is called the greatest lower bound or
infimum of S, denoted glb(S) or inf(S), (one can show that if inf(S) exists, it is unique). Likewise, we could define
least upper bound or supremum (lub(S) = sup(S)) and show that if such a bound exists, it is unique.

We say that an ordered field has the greatest lower bound property if for every non-empty set S such that S
is bounded below, glb(S) exists. Likewise, we could define a least upper bound property. It turns out that these
two properties are equivalent (if one holds, both hold). Finally, any ordered field having the greatest lower bound
(or equivalently least upper bound) property is called a complete ordered field.

Notice that if S = {r ∈ Q |
√

2 ≤ r}, then glb(S) =
√

2 6∈ Q. This shows that Q does not have the greatest lower
bound property – it is not a complete ordered field. On the other hand, R is complete. In fact, this characterizes R:
It is the only complete ordered field (up to isomorphism).

Theorem: Suppose that F and K are complete ordered fields. Then there exists a bijection ϕ : F→ K such that
ϕ(a + b) = ϕ(a) + ϕ(b), ϕ(ab) = ϕ(a)ϕ(b), and a < b implies ϕ(a) < ϕ(b) for all a, b ∈ F. This means that any two
complete ordered fields are isomorphic. We call any such field: R, the real numbers.

Proof: As a sketch of a proof, take the R defined via Dedekind cuts or some such method and let F be a complete
ordered field. Then we work on defining a map. To make sure ϕ is an isomorphism of fields we must let ϕ(0) = 0,
ϕ(1) = 1, and so ϕ(2) = ϕ(1 + 1) = ϕ(1) + ϕ(1) = 1 + 1 = 2, etc. This eventually shows that ϕ maps Q in
R to the corresponding copy of Q in F. So far ϕ preserves orderings. Next, any real number can be defined by
a “cut”. Pick r ∈ R then r = inf(S) where S = {x ∈ Q | r ≤ x}. For things to work out, we must define
ϕ(r) = inf(ϕ(S)) = inf({ϕ(x) | x ∈ S}). It is not too difficult to show that since S is bounded below, so is ϕ(S).
Thus ϕ(S) must have an infimum (because F is complete). We now have ϕ defined on all of R. One now shows that
it is an order preserving homomorphism and is one-to-one and onto. We now have that R ∼= F and so by transitivity
any two complete ordered fields are isomorphic. �

This now means that whether we construct the real numbers via Dedekind cuts or by equivalence classes of
Cauchy sequences of rational numbers or by decimal sequences, these construction yield the same abstract system
that we call R.

Now what about C? Well, notice that we cannot solve x2 + 1 = 0 in R. This means that while R is complete
in some topological sense, it is not complete is an algebraic sense. We say that a field is algebraically closed if
every non-constant polynomial has a root, or equivalently, every non-constant polynomial factors into linear factors.
The Fundamental Theorem of Algebra (which we will prove later in this course) states that C is algebraically
closed. It turns out that every field has an algebraic closure (every field is contained in an algebraically closed field
and the smallest such field is its called its closure). Also, an algebraic closure of a field is unique up to isomorphism.

Theorem: The complex numbers, C, are characterized as the algebraic closure of a complete order field: If F̄ is
the algebraic closure of a complete ordered field F, then F̄ ∼= C where this isomorphism extends an order preserving
isomorphism between F and R.

This explains why we are naturally led to the study of complex numbers whether we originally wanted to or not!
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