Math 4710/5710

Homework #5

Please remember when submitting any work via email or in person to...

PUT YOUR NAME ON YOUR WORK!

#1 A Problem of Intervals: Let Y = [-1, 1] be thought of as a subspace of \mathbb{R} (with the standard topology). For each of the following sets: If open, explain why. If not open, explain why not.

 $\begin{aligned} A &= \{ x \in \mathbb{R} \mid \frac{1}{2} < |x| < 1 \}, \, B = \{ x \in \mathbb{R} \mid \frac{1}{2} < |x| \le 1 \}, \, C = \{ x \in \mathbb{R} \mid \frac{1}{2} \le |x| < 1 \}, \, D = \{ x \in \mathbb{R} \mid \frac{1}{2} \le |x| \le 1 \}, \, \text{and} \, E &= \{ x \in \mathbb{R} \mid 0 < |x| < 1 \text{ and } 1/x \notin \mathbb{Z}_{>0} \}. \end{aligned}$

[**Grad.**] Answer the same questions for Y thought of as a subspace of (a) \mathbb{R}_{ℓ} (the lower limit topology) and of (b) \mathbb{R}_{K} (the K-topology).

#2 Open Your Map: Let X and Y be topological spaces and $f: X \to Y$. We say f is an open map if for every open set $U \subseteq X$, we have f(U) is open (in Y).

Next, fix some index *i* (between 1 and *n*) and recall that $\pi_i : X_1 \times X_2 \times \cdots \times X_n \to X_i$ is the projection map $\pi_i(x_1, \ldots, x_n) = x_i$ onto the *i*th coordinate. Show π_i is an open map.

#3 Lines are Easy - Right? Consider $Y = \{x \times y \in \mathbb{R}^2 \mid y = 1 - x\}$ (a line with negative slope).¹ If we think of Y as a subspace of \mathbb{R}^2 with the standard topology, Y "look like" the reals with the standard topology. [Technically, by "looks like" I mean "homeomorphic" – more on this later.]

Describe the topology on Y if we think of it as a subspace of $\mathbb{R}_{\ell} \times \mathbb{R}$ (lower limit product standard topology). Then describe the topology on Y if we think of it as a subspace of $\mathbb{R}_{\ell} \times \mathbb{R}_{\ell}$ (lower limit product lower limit topology).

#4 Getting Things In Order: [Grad.] Let \mathbb{R}^2_{lex} denote $\mathbb{R} \times \mathbb{R}$ with the order topology coming from the lexicographic ordering of the plane. Let \mathbb{R}_d denote the real numbers with the discrete topology and give $\mathbb{R}_d \times \mathbb{R}$ the product topology (discrete by standard). Show \mathbb{R}^2_{lex} and $\mathbb{R}_d \times \mathbb{R}$ have the same topology.

Note: In class we sketched out that \mathbb{R}^2_{lex} 's topology is strictly finer than the standard topology on \mathbb{R}^2 . This problem better explains why this is the case.

¹I am using the weird notation: $x \times y$ instead of the usual (x, y) since this problem involves intervals. Sorry!