Math 4710/5710

Homework #7

Please remember when submitting any work via email or in person to...

Some background: Let us define $\mathbb{R}^{\omega} = \mathbb{R} \times \mathbb{R} \times \cdots$ to be the set of sequences of real numbers: $\mathbf{x} = (x_1, x_2, x_3, \dots)$. If we give \mathbb{R} its standard topology, then we can give \mathbb{R}^{ω} the corresponding product topology or box topology.

We can also give \mathbb{R}^{ω} a *uniform topology* coming from the uniform metric on \mathbb{R}^{ω} . Here we let:

$$\bar{\rho}(\mathbf{x}, \mathbf{y}) = \sup\{d(x_i, y_i) \mid i = 1, 2, \dots\}$$

where $\mathbf{x} = (x_1, x_2, ...)$, $\mathbf{y} = (y_1, y_2, ...)$, and $\bar{d}(x_i, y_i) = \min\{|x_i - y_i|, 1\}$. Note: If we used $|x_i - y_i|$ instead of $\min\{|x_i - y_i|, 1\}$, our supremum could be ∞ and then $\bar{\rho}$ would not be a metric.

Let $\mathbb{R}^{\infty} = \{\mathbf{x} \in \mathbb{R}^{\omega} \mid \mathbf{x} \text{ is eventually zero }\}$. So $\mathbf{x} = (x_1, x_2, \dots) \in \mathbb{R}^{\infty}$ implies that there exists some $N \in \mathbb{Z}_{>0}$ such that $x_n = 0$ for all $n \ge N$. So in other words, the coordinates of \mathbf{x} are non-zero only finitely many times.

Note: If we think of \mathbb{R}^n as a subset of \mathbb{R}^{n+1} by identifying (x_1, \ldots, x_n) with $(x_1, \ldots, x_n, 0)$, then \mathbb{R}^∞ is more-or-less the union of all \mathbb{R}^n 's.

#1 One is Enough: We explore these interesting spaces.

- (a) Give an example of a subset of \mathbb{R}^{ω} that is open in the box topology but not the product topology. You should carefully *prove* your set is *not* open in the product topology.
- (b) Assuming we already know \bar{d} is a metric on \mathbb{R} , show that $\bar{\rho}$ is a metric on \mathbb{R}^{ω} .
- (c) If $B_{\epsilon}(\mathbf{x}) = \{\mathbf{y} \in \mathbb{R}^{\omega} \mid \bar{\rho}(\mathbf{x}, \mathbf{y}) < \epsilon\}$ denotes the (open) ball centered at \mathbf{x} of radius ϵ , then

describe $B_1(0)$ and $B_2(0)$ where 0 = (0, 0, ...).

(d) Determine the closure of \mathbb{R}^{∞} in \mathbb{R}^{ω} in the (i) product, (ii) box, and [Grad. (iii)] uniform topologies.