Math 4710/5710

Homework #9

Please remember when submitting any work via email or in person to...

PUT YOUR NAME ON YOUR WORK!

#1 Finitely Many Problems: Let Y_1, \ldots, Y_n be compact subspaces of some topological space X.

- (a) Show that $Y_1 \cup \cdots \cup Y_n$ is compact. [A finite union of compact subspaces is still compact.]
- (b) Give a counterexample to show that this can fail when we union infinitely many compact subspaces.

#2 Take it to the Limit: Suppose x_1, x_2, \ldots is a sequence in a topological space X such that $x_n \to x$ (i.e., the sequence converges to $x \in X$). Prove $C = \{x\} \cup \{x_1, x_2, \ldots\}$ is compact.

#3 You'll be OK: Recall $K = \{1, 1/2, 1/3, ...\}$ and $\mathcal{B}_K = \{(a, b), (a, b) - K \mid a, b \in \mathbb{R} \text{ and } a < b\}$ is a basis for \mathbb{R}_K (\mathbb{R} with the K-topology).

It is helpful to note that if $0 \notin U$, then U is open in \mathbb{R}_K if and only if U is open in \mathbb{R} with the standard topology. Only open neighborhoods of 0 cause problems for us!

- (a) Show I = [0,1] = {x ∈ ℝ | 0 ≤ x ≤ 1} is not compact when viewed as a subspace of ℝ_K.
 Note: By our note above, since K-open and standard open sets coincide when 0 is not present, any closed interval (e.g., [1,2] or [-10,-3]) avoiding 0 would be compact!
- (b) Show \mathbb{R}_K is connected.
- (c) **[Grad.]** Show \mathbb{R}_K is not path connected.