
Math 5230 Structures Related to Inner Product Spaces Linear Algebra

There are various generalizations of the notation of an inner product space. We will stick to real and complex
inner product spaces. These are vector spaces equipped with an inner product. This gives us a way to compute
things like lengths and angles. Once we have an inner product in hand, we can define related structures like a norm
and metric.

But first we should recall some facts about the field of complex numbers: C = {a + bi | a, b ∈ R} (i is the
imaginary root, so i2 = −1). Given z = a + bi ∈ C, we call Re(z) = a the real part of z and bi the imaginary
part. Let z = a + bi and w = c + di. We have z + w = (a + c) + (b + d)i and zw = (ac − bd) + (ad + bc)i. The
complex numbers also are equipped with the operation of conjugation defined by z̄ = a+ bi = a − bi (we flip the
sign between the real and imaginary parts). Conjugation is an involution on C. In other words, z + w = z̄ + w̄,
zw = z̄ w̄, and ¯̄z = z. Notice also that z = z̄ if and only if z = Re(z) ∈ R (i.e. z is self conjugate only when it is real).
Notice zz̄ = (a+ bi)(a− bi) = a2 + b2 ∈ R≥0. The modulus of a complex number is defined as |z| =

√
zz̄ =

√
a2 + b2.

If we think of z = a+ bi as a point (a, b) in R2, then |z| is the “length” of z (i.e., the distance from z to the origin).

Let us fix a particular a subfield of the complex numbers, say F. Consequently F will contain (at least) all of the
rational numbers, Q, and be closed under addition, subtraction, multiplication, and division (not by zero). Usually,
we have in mind F = R or F = C. Also, let V be a vector space over F.

Definition: Let V be equipped with a mapping 〈 · , · 〉 : V × V → F (called an inner product) such that. . .

(a) [Sesquilinear] (one and a half times linear) 〈 · , · 〉 is linear in the first slot and conjugate linear in the second slot.1

〈u + v,w〉 = 〈u,w〉+ 〈v,w〉, 〈u,v + w〉 = 〈u,v〉+ 〈u,w〉, 〈cv,w〉 = c〈v,w〉, and 〈v, cw〉 = c̄〈v,w〉.
When F is a subfield of the real numbers (such as R itself), conjugation does not do anything. In this case, the
inner product is linear in both slots (i.e. bilinear).

(b) [Conjugate Symmetric] 〈v,w〉 = 〈w,v〉.
Again, if F is a real field, conjugation does nothing. In such a case, we have plain old symmetry.

(c) [Positive Definite] Notice by conjugate symmetry, we have 〈v,v〉 = 〈v,v〉 so 〈v,v〉 ∈ R. We require

〈v,v〉 ≥ 0 and 〈v,v〉 = 0 if and only if v = 0.

where u,v,w ∈ V and c ∈ F. If so, V is an inner product space equipped with inner product 〈 · , · 〉. In particular,
when F = C we say V is a complex inner product space and when F = R we say V is a real inner product space.

Definition: Let V be equipped with a mapping ‖ · ‖ : V → R (called a norm) such that. . .

(a) [Positive Definite] ‖v‖ ≥ 0 and ‖v‖ = 0 if and only if v = 0

(b) [Respects Scaling] ‖cv‖ = |c| ‖v‖

(c) [Triangle Inequality] ‖v + w‖ ≤ ‖v‖+ ‖w‖
where v ∈ V and c ∈ F. If so, V is called a normed space.

Theorem: Every inner product space V has the structure of a normed space. Specifically, let V be an inner

product space. Then ‖v‖ =
√
〈v,v〉 for all v ∈ V is a norm on V .

Note: Given a normed space, its norm does not necessarily come from an inner product.

The first part of the definition of a norm follows from the inner product’s positive definiteness. The second part
is an easy consequence of the scalar multiple part of sesquilinearity. The triangle inequality quickly follows from the
following (rather important) result:

Theorem: (Cauchy-Schwarz Inequality) Let V be an inner product space. For all v,w ∈ V , |〈v,w〉| ≤ ‖v‖ ‖w‖.

Proof: There are many proofs of this famous inequality. Here we present a quirky one. First, note if an inner
product 〈v,w〉 = z is not a real number, we can multiply it by ζ = z̄/|z| so that 〈ζv,w〉 = ζ〈v,w〉 = z̄/|z| · z =
|z|2/|z| = |z| ∈ R. Moreover, |ζ| = |z̄|/|z| = 1 so that |〈ζv,w〉| = |ζ| · |〈v,w〉| = |〈v,w〉| and ‖ζv‖ = |ζ| · ‖v‖ = ‖v‖.
Thus the inequality holds for v and w if and only if it holds for ζv and w. So without loss of generality we may
assume 〈v,w〉 is a real number.

1Some people follow the opposite convention and have their inner product conjugate linear in the first slot and linear in the second
slot. This is common in matrix theory and especially in Physics.
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Let x be any real number. Notice 0 ≤ ‖xv + w‖2 = 〈xv + w, xv + w〉 = x2〈v,v〉 + x〈v,w〉 + x〈w,v〉 + 〈w,w〉
where we used sequilinearity to pull apart the inner product. Keep in mind that x is real, so x̄ = x (i.e., conjugation
does nothing). Also, we have assumed 〈v,w〉 is real, so 〈w,v〉 = 〈v,w〉 = 〈v,w〉. Thus our expression simplifies to
‖v‖2x2 + 2〈v,w〉x+ ‖w‖2.

If we let A = ‖v‖2, B = 2〈v,w〉, and C = ‖w‖2. Then 0 ≤ ‖xv+w‖2 = Ax2+Bx+C = y is a quadratic in x with
real coefficients A,B,C. Since y ≥ 0, our quadratic cannot have distinct real roots. This means that the discriminant
for the quadratic B2−4AC = (2〈v,w〉)2−4‖v‖2‖w‖2 ≤ 0 (recall that B2−4AC is the part of the quadratic formula
inside the square root). Thus (〈v,w〉)2 ≤ (‖v‖ · ‖w‖)2. Square rooting, we have |〈v,w〉| ≤ ‖v‖ ‖w‖. �

Now the norm’s triangle inequality easily follows. Note: For real numbers a, b, we always have a ≤ |a| =
√
a2 ≤√

a2 + b2 = |a+ bi| (i.e., for a complex number z, Re(z) ≤ |z|). Therefore,

‖v + w‖2 = 〈v + w,v + w〉 = 〈v,v〉+ 〈v,w〉+ 〈w,v〉+ 〈w,w〉 = ‖v‖2 + 〈v,w〉+ 〈v,w〉+ ‖w‖2

= ‖v‖2 + 2Re(〈v,w〉) + ‖w‖2 ≤ ‖v‖2 + 2|〈v,w〉|+ ‖w‖2

≤ ‖v‖2 + 2‖v‖‖w‖+ ‖w‖2 = (‖v‖+ ‖w‖)2

where our last inequality was the Cauchy-Schwarz inequality. Square-rooting yields ‖v + w‖ ≤ ‖v‖+ ‖w‖.
An important consequence of the Cauchy-Schwarz inequality is that for nonzero v,w ∈ V in a real inner product

space, we can define the notion of the angle between v and w. In particular, notice Cauchy-Schwarz says
|〈v,w〉|
‖v‖ ‖w‖

≤ 1.

This means −1 ≤ 〈v,w〉
‖v‖ ‖w‖

≤ 1 so that θ = arccos

(
〈v,w〉
‖v‖ ‖w‖

)
makes sense. We note that 0 ≤ θ ≤ π where θ = 0

(respectively π) if v and w point in the same (respectively opposite) direction(s). We also have the familiar identity:
〈v,w〉 = ‖v‖ ‖w‖ cos(θ) (even when v or w is 0 so that θ is ill defined).

Definition: Let X be a set equipped with a mapping d : X ×X → R (called a metric) such that. . .

(a) [Positivity] d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y

(b) [Symmetry] d(x, y) = d(y, x)

(c) [Triangle Inequality] d(x, z) ≤ d(x, y) + d(y, z)

where x, y, z ∈ X. If so, X is called a metric space.

Theorem: Every normed space V has the structure of a metric space. Specifically, let V be a normed space.
Then d(v,w) = ‖v −w‖ for all v,w ∈ V is a metric on X.

Note: However, given a metric space, its metric does not necessarily come from a norm. Also, if you study manifold
theory, be aware that manifold theorists and differential geometers often use the term metric to mean something
quite different. We are using metric in the topological sense.

Once again, the first part of the definition ultimately flows from positive definiteness: d(v,w) = ‖v−w‖ = 0 if and
only if v−w = 0 (i.e., v = w). Symmetry is also easy: d(v,w) = ‖v−w‖ = ‖−(w−v)‖ = |−1| ·‖w−v‖ = d(w,v).
Finally, the metric version of the triangle inequality follows from the norm version:

d(u,w) = ‖u−w‖ = ‖u− v + v −w‖ ≤ ‖u− v‖+ ‖v −w‖ = d(u,v) + d(v,w).

In a linear algebra course, we are not typically concerned with issues of limits and continuity (i.e., analysis issues).
However, it is worth (briefly) mentioning that a metric allows one to define a topological structure on our space X.
In particular, O ⊆ X is open if given any point x0 ∈ O we have that points arbitrarily close to x0 also belong to O.
More concretely, O is open if for every x0 ∈ O, there exists some ε > 0 such that whenever d(x, x0) < ε, we have
x ∈ O. The collection of open subsets of X form a topology which allows one to explore notions such as continuity,
limits, connectedness, and more. We will not pursue this further here.

Summing up: Every inner product space gives us a compatible normed space structure. Every normed space gives
us a compatible metric space structure. Every metric space gives us a compatible topological space structure. None
of these implications hold in reverse (in general). Inner product spaces have many layers of rich structure. In such
a space, linear algebra, geometry, analysis, and topology all have something to tell us.2

2Functional analysis begins with a study of these structures (inner product, normed, and metric spaces). Such a space in which all
Cauchy sequences converge is called complete. A complete normed space is called a Banach space. A complete inner product space is
called a Hilbert space. These kinds of spaces play a big role in quantum mechanics and elsewhere.
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Example: For x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Cn the mapping 〈x,y〉 = xȳt =
n∑
i=1

xiȳi is an inner product

on Cn. This is called the dot product or the standard inner product. If we consider Rn instead of Cn, we have

x •y =
n∑
i=1

xiyi for x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Rn. In this case, the norm is ‖x‖ =
√
x21 + · · ·+ x2n and the

corresponding metric (i.e. distance function) is d(x,y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2. These are the standard

Euclidean norm and metric.

Example: (Related to the previous example.) Let A = (aij), B = (bij) ∈ Cm×n. We let B∗ = B̄t = Bt denote

the conjugate transpose of B. Define 〈A,B〉 = tr(AB∗) =
m∑
i=1

n∑
j=1

aijbij . This is an inner product on Cm×n called

the Frobenius inner product. If we pull apart a matrix row by row (or column by column), we can think of Cm×n
as Cmn. With such an identification, the Frobenius inner product on Cm×n is really nothing more than the dot
product on Cmn. In the case of real matrices, Rm×n, this is just 〈A,B〉 = tr(ABT ). In particular, for A ∈ Rm×n,

‖A‖ =

√
m∑
i=1

n∑
j=1

(aij)2.

We also have more interesting examples built from integration.

Example: For fixed real numbers a < b, let C[a, b] = {f : [a, b] → R | f is continuous } (i.e., continuous real

valued functions defined on the closed interval [a, b]). This is a real vector space. Next, fix a positive continuous
weight function W (x) ∈ C[a, b] (so W (x) > 0 for a ≤ x ≤ b). For any f(x), g(x) ∈ C[a, b], we define the inner
product:

〈f(x), g(x)〉 =

∫ b

a

f(x)g(x)W (x) dx.

While bilinearity and symmetry are easily established, showing positive definiteness requires careful thought and
referencing continuity. Note that for any f(x) ∈ C[a, b], f(x)2 ≥ 0 and so f(x)2W (x) ≥ 0 thus 〈f(x), f(x)〉 =∫ b

a

f(x)2W (x) dx ≥ 0. Next, if f(x0) 6= 0 for some x0 ∈ [a, b], then f(x0)2 > 0. Thus f(x0)2W (x0) > 0. Analysis

tells us that a continuous function (such as f(x)2W (x)) that is positive at a point must also be positive on some

open interval about that point. Eventually this allows us to conclude 〈f(x), f(x)〉 =

∫ b

a

f(x)2W (x) dx > 0. Thus

〈f(x), f(x)〉 = 0 only if f(x) = 0. For the space of polynomials3, we can loosen our restriction on our weight function.
In that context, we only need W (x) to be a non-zero, non-negative continuous function.

The above example is a first step into the world of orthogonal polynomials. For example, choosing [a, b] = [−1, 1]

and W (x) = 1 so that 〈f(x), g(x)〉 =

∫ 1

−1
f(x)g(x) dx and then running the Gram-Schmidt process on 1, x, x2, . . . ,

one gets: 1, x, x2−1/3, x3−3/5x, . . . . These polynomials (up to a certain normalization) are Legendre polynomials
which show up in numerous mathematical and scientific applications.

Coordinates:
Let V be a (finite dimensional) inner product space with basis β = {v1, . . . ,vn}. Given v,w ∈ V , we have

v =
n∑
i=1

bivi and w =
n∑
i=1

civi for some scalars bi, ci ∈ F (i.e., [v]β = [b1 b2 · · · bn]t and [w]β = [c1 c2 · · · cn]t). We

have:
〈v,w〉 =

〈
n∑
i=1

bivi,

n∑
j=1

cjvj

〉
=

n∑
i=1

n∑
j=1

bicj〈vi,vj〉.

If we define a square matrix A = (aij) by aij = 〈vi,vj〉, then 〈v,w〉 =
n∑
i=1

n∑
j=1

biaijcj = ([v]β)TA [w]β . Here A is

called the matrix of the inner product (relative to the basis β).

3Note that for f(x) ∈ C[a, b], if there are real numbers an, . . . , a0 ∈ R such that f(x) = anxn + · · ·+ a0, we say f(x) is a polynomial
function. Since real polynomials are determined by their values on any closed interval, it turns out that R[x] is isomorphic with the
subspace of these polynomial functions on [a, b]. We often abuse such an isomorphism and use polynomials and polynomial functions
interchangably. If we were considering polynomial functions on a finite field, this would no longer work. Over finite fields, there are
infinitely many polynomials but only finitely many polynomial functions.
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The matrix for the dot product (relative to the standard basis) is just the identity matrix. Also, not all matrices
arise as matrices of inner products. For example, because of conjugate symmetry we must have A = A∗ (i.e., A is
Hermitian). Over the reals, this amounts to requiring A = AT (i.e., A is symmetric). In addition to the symmetry
requirement, the matrix must also satisfy: x∗Ax ≥ 0 for all x ∈ Fn×1 and x∗Ax = 0 only if x = 0 (i.e., A is positive
definite).

Definition: Let V be an inner product space. We say v,w ∈ V are orthogonal (or perpendicular) if
〈v,w〉 = 0. If S ⊆ V and for all v,w ∈ S and v 6= w we have 〈v,w〉 = 0, then we say S is an orthogonal set. If
u ∈ V and ‖u‖ = 1, we say u is a unit vector. Notice any non-zero vector v ∈ V can be normalized (i.e. turned
into a unit vector) by rescaling: u = v/‖v‖. If S is an orthogonal set of unit vectors, S is called an orthonormal
set.

The zero vector is weird. Since 〈0,v〉 = 0 for any v ∈ V , the zero vector is orthogonal to every vector – including
itself! In fact, by positive definiteness, the zero vector is the only vector that is orthogonal to itself.

Lemma: Let S be an orthogonal subset of an inner product space V . Then S is linearly independent if and only
if 0 6∈ S. In particular, orthonormal sets are always linearly independent.

Proof: If S is linearly independent, 0 6∈ S since any set containing the zero vector is linearly dependent. Now suppose
0 6∈ S and consider v1, . . .vn ∈ S (distinct vectors) and c1, . . . , cn ∈ F such that c1v1 + · · · + cnvn = 0. Since S is
orthgonal, we have 〈vi,vj〉 = 0 for i 6= j. Thus 0 = 〈0,vj〉 = 〈c1v1 + · · ·+ cnvn,vj〉 = c1〈v1,vj〉+ · · ·+ cn〈vn,vj〉 =
0 + · · · + 0 + cj〈vj ,vj〉 + 0 + · · · + 0. But 0 6∈ S means vj 6= 0 so by positivity 〈vj ,vj〉 6= 0. Therefore, cj = 0 (for
any j = 1, . . . , n). Consequently S is linearly independent.

Finally, if S is orthonormal, all its elements are unit vectors (i.e., length 1). This means 0 6∈ S (and orthonormal
implies orthogonal), so S is linearly independent. �

The above proof indicates that coordinates should be particularly nice when working with orthogonal bases. Let
β = {v1, . . . ,vn} be an orthogonal basis for a finite dimensional inner product space V . Let v = c1v1 + · · ·+ cnvn
for c1, . . . , cn ∈ F (i.e., the coordinates of v are [c1 . . . cn]T ). Then, just like the calculation in our proof above,

〈v,vi〉 = c1〈v1,vi〉 + · · · + cn〈vn,vi〉 = 0 + · · · + 0 + ci〈vi,vi〉 + 0 + · · · + 0. This means ci = 〈v,vi〉
〈vi,vi〉 so that

v =
n∑
i=1

〈v,vi〉
〈vi,vi〉vi (i.e., v’s ith β-coordinate is 〈v,vi〉

〈vi,vi〉 ).

When β is orthonormal (i.e., 〈vi,vj〉 = δij which is 1 if i = j and 0 otherwise), we simply have v =
n∑
i=1

〈v,vi〉vi

(i.e., v’s ith β-coordinate is 〈v,vi〉 – that is – just the inner product with the appropriate basis element). For example,
the (standard) coordinates of v = [1 2 3] ∈ R1×3 are v • i = 1, v • j = 2, and v •k = 3. Also, if β is orthonormal,
notice that the matrix of the inner product relative to β is A = [aij ] where aij = 〈vi,vj〉 = δij . In other words, the
matrix of an inner product relative to an orthonormal basis is just the identity matrix.

Lengths also work nicely with orthogonal sets. Suppose S = {w1, . . . ,wn} is orthogonal. Then

‖w1 + · · ·+ wn‖2 =

〈
n∑
i=1

wi,

n∑
j=1

wj

〉
=

n∑
i=1

n∑
j=1

〈vi,vj〉 =

n∑
i=1

〈wi,wi〉 = ‖w1‖2 + · · ·+ ‖wn‖2

where one of the sums drops out because 〈wi,wj〉 = 0 if i 6= j. This then implies that if β = {v1, . . . ,vn} is an

orthonormal basis, then ‖v‖2 =
∑n
i=1 ‖〈v,vi〉vi‖2 =

n∑
i=1

|〈v,vi〉|2 (i.e. the length of v is the sum of the squares of

the lengths of its coordinates.

Gram-Schmidt Orthgonalization:
Seeing that orthogonal (or even better orthonormal) bases are so nice. One might ask if these actually exist?

Perhaps surprisingly, for finite dimensional inner product spaces, they always do. This is a consequence of the
Gram-Schmidt orthgonalization procedure. First, we need to be reminded about orthogonal projections.

Definition: Let V be an inner product space and v,w ∈ V with v 6= 0. Let projv(w) =
〈w,v〉
‖v‖2

v. This is the

orthogonal projection of w onto v.

If we let p = projv(w), then 〈w − p,v〉 = 〈w,v〉 − 〈p,v〉 = 〈w,v〉 − 〈w,v〉‖v‖2 〈v,v〉 = 〈w,v〉 − 〈w,v〉 = 0. In other

words, we have w = (w − p) + p where w − p is orthogonal to v and p is parallel to (i.e., a scalar multiple of) v.
Thus projections give us a way to pull apart vectors into parallel and perpendicular parts.

Gram-Schmidt is amounts to successively removing parallel parts of vectors leaving only the orthogonal bits. Let
α = {w1, . . . ,wn} be a linearly independent set. Recursively define a set β = {v1, . . . ,vn} as follows:
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v1 = w1 vj+1 = wj+1 − projv1
(wj+1)− · · · − −projvn

(wj+1)
This means each new vi is wi with its orthogonal projections onto previous stuff removed. Notice span{w1, . . . ,wj}

= span{v1, . . . ,vj} for each j = 1, . . . , n. We can see this since each new vector vj+1 is equal to wj+1 modulo the
span of previous vectors. Thus swapping out wj+1 with vj+1 does not effect the span. Also, we have:

〈vj+1,vk〉 = 〈wj+1,vk〉 −
∑j
`=1〈projv`

(wj+1),vk〉 = 〈wj+1,vk〉 −
∑j
`=1

〈wj+1,v`〉
‖v`‖2

〈v`,vk〉

= 〈wj+1,vk〉 −
〈wj+1,vk〉
‖vk‖2

〈vk,vk〉 = 〈wj+1,vk〉 − 〈wj+1,vk〉 = 0

where the sum collapses since orthogonality of previous vectors implies 〈v`,vk〉 = 0 for ` 6= k. Thus each new vj+1

is orthogonal to the previous vk’s.

Theorem: (Gram-Schmidt) Let α = {w1, . . . ,wn} be a basis for a finite dimensional inner product space V .

Define v1 = w1 and then vj+1 = wj+1 −
∑j
`=1 projv`

(wj+1). Then for each 1 ≤ j ≤ n, span{w1, . . . ,wj} =
span{v1, . . . ,vj}. Also, β = {v1, . . . ,vn} is an orthogonal basis for V . Moreover, normalizing the vectors in β yields
an orthonormal basis for V . In particular, every finite dimensional inner product space has an orthonormal basis.

As an addendum to this process, we note that if we apply the Gram-Schmidt process to a linearly dependent
set, it still works – after a minor modification. Suppose wj+1 depends linearly on previous vectors. Then when we
attempt to compute vj+1, its formula will yield 0. Ultimately this means we can still apply the process to a linearly
dependent set. Modification for linearly dependent sets: If we get vj = 0, then we should toss out this vector (and
wj) and continue as usual. Thus we detect and then ignore the dependent stuff. We also note that some people,
calculate each new vector and immediately normalize (to be a unit vector). If one does this, ‖v`‖2 = 1 in the above
calculations and our output is already an orthonormal basis.

In the end there is not a lot of variety in the world of finite dimensional inner product spaces. First, we define
the notion of isometry (what it means to be essentially the “same” inner product space).

Definition: A mapping T : V → W is morphism of inner product spaces if T is linear and it preserves inner
products. Specifically, for all v1,v2 ∈ V , we have 〈T (v1), T (v2)〉 = 〈v1,v2〉 (the first inner product is the inner
product in W and the second is the inner product in V ). When T is an isomorphism (i.e., an invertible morphism),
we say T is an isometry.

The Gram-Schmidt process guarantees that every finite dimensional inner product space V has an orthonormal
basis β. The coordinate map [·]β : V → Fn×1 is easily seen to be an isometry when Fn×1 is given the standard inner
product (i.e., the dot product). Thus every n-dimensional real inner product space is essentially just Rn (with its
standard dot product) in disguise. Likewise, every n-dimensional complex inner product space is essentially just Cn
(with its standard dot product). Just as with finite dimensional vector spaces, when dealing with finite dimensional
inner product spaces, every computation and question can be realized in terms of column vectors (with the usual
addition, scalar multiplication, and dot product).

Example: Let S = {w1,w2,w3} = {(4,−1, 1), (8,−1, 3), (5,−2,−4)} ⊆ R3.

• v1 = w1 = (4,−1, 1)

• v2 = w2 −
w2 •v1

‖v1‖2
v1 = (8,−1, 3)− 36

18
(4,−1, 1) = (0, 1, 1)

• v3 = w3 −
w3 •v1

‖v1‖2
v1 −

w3 •v2

‖v2‖2
v2 = (5,−2,−4)− 18

18
(4,−1, 1)− −6

2
(0, 1, 1) = (1, 2,−2)

We have span(S) = span{v1,v2,v3} but our new spanning set is an orthogonal set (without zero vector). This
implies that both S and our new set are linearly independent sets. Since dim(R3) = 3, these are bases for R3.
Specifically, {(4,−1, 1), (0, 1, 1), (1, 2,−2)} is an orthogonal basis for R3. We can normalize our set and have that{

1
3
√
2
(4,−1, 1), 1√

2
(0, 1, 1), 13 (1, 2,−2)

}
is an orthonormal basis for R3.

Example: Consider S = {w1,w2,w3,w4} = {(1, 0, 0, i), (1+ i, 1, 1, 1+ i), (3+ i, 1, 1, 1+3i), (0, 1+2i, 0, 1)} ⊆ C4.

• v1 = w1 = (1, 0, 0, i)

• v2 = w2 −
w2 •v1

‖v1‖2
v1 = (1 + i, 1, 1, 1 + i)− 2

2
(1, 0, 0, i) = (i, 1, 1, 1)
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• Notice that w3 −
w3 •v1

‖v1‖2
v1 −

w3 •v2

‖v2‖2
v2 = (3 + i, 1, 1, 1 + 3i)− 6

2
(1, 0, 0, i)− 4

4
(i, 1, 1, 1) = (0, 0, 0, 0).

This means that w3 ∈ span{v1,v2} = span{w1,w2}. So we can toss out w3 (and 0).

• v3 = w4 −
w4 •v1

‖v1‖2
v1 −

w4 •v2

‖v2‖2
v2 = (0, 1 + 2i, 0, 1)− −i

2
(1, 0, 0, i)− 2 + 2i

4
(i, 1, 1, 1) =

1

2
(1, 1 + 3i,−1− i,−i)

We have span(S) = span
{

(1, 0, 0, i), (i, 1, 1, 1), 12 (1, 1 + 3i,−1− i,−i)
}

where our new set is an orthogonal basis for

span(S). If we normalize our new vectors, we have α =
{

1√
2
(1, 0, 0, i), 12 (i, 1, 1, 1), 1√

14
(1, 1 + 3i,−1− i,−i)

}
which

is an orthonormal basis for span(S).

Example: Consider the inner product 〈f, g〉 =

∫ 1

−1
f(x)g(x) dx defined on R[x]. If we run the Gram-Schmidt

algorithm (unnormalized) on {1, x, x2, . . . } and then rescale them so that ‖Pn(x)‖2 =
2

2n+ 1
, we will get a collection

of polynomials known as Legendre polynomials. Let us denote theses by P0(x), P1(x), etc. We calculate the first few
Legendre polynomials:

• f0(x) = 1. We need 2(?)2 = (?)2
∫ 1

−1 12 dx = (?)2‖f0(x)‖2 =
2

2(0) + 1
, so ? = 1 and thus P0(x) = f0(x) = 1.

• f1(x) = x− 〈x, 1〉
‖1‖2

1 = x−
∫ 1

−1 x · 1 dx∫ 1

−1 12 dx
1 = x− 0

2
1 = x. Using the Legendre normalization, we need

2

3
(?)2 = ‖(?)2f1(x)‖2 =

2

2(1) + 1
so ? = 1 and thus P1(x) = f1(x) = x.

• f2(x) = x2 − 〈x
2, 1〉
‖1‖2

1− 〈x
2, x〉
‖x‖2

x = x2 −
∫ 1

−1 x
2 · 1 dx∫ 1

−1 12 dx
1−

∫ 1

−1 x
2 · x dx∫ 1

−1 x
2 dx

x = x2 − 2/3

2
1− 0

2/3
x = x2 − 1

3
.

Again, we need
8

45
(?)2 = (?)2

∫ 1

−1(x2 − 1/3)2 dx = ‖? f2(x)‖2 =
2

2(2) + 1
=

2

5
so (?)2 = 9/4 and thus ? = 3/2.

Therefore, P2(x) = (3/2)f2(x) =
3

2
x2 − 1

2
.

Connection with Dual Spaces:
Notice that since the inner product is linear in its first slot, for any w ∈ W we have 〈· ,w〉 : W → F is a

linear map. In other words, the mapping f defined by f(v) = 〈v,w〉 is a dual vector (i.e., 〈· ,w〉 ∈ W ∗). In fact,
when β = {w1, . . . ,wm} is an orthonormal basis, β∗ = {〈· ,w1〉, . . . , 〈· ,wm〉} is its dual basis. Why? Denoting
w∗j = 〈· ,wj〉, we have w∗j (wi) = 〈wi,wj〉 = δij .

Suppose T : V → W is a linear transformation of finite dimensional vector spaces where α = {v1, . . . ,vn} is a
basis for V and β = {w1, . . . ,wm} is an orthogonal basis for W . Then the (i, j)-entry of the coordinate matrix [T ]βα
is w∗i (T (vj)) = 〈T (vj),wi〉.

Working over a real field, we can make this cleaner. If F is a subfield of the real numbers, the inner product is
bilinear and symmetric. Thus the (i, j)-entry of the coordinate matrix [T ]βα (still assuming β is orthonormal) could
be written as 〈wi, T (vj)〉. Also, in this case, the association of w ∈ W with 〈w, ·〉 = 〈· ,w〉 ∈ W ∗ is actually an
isomorphism. For any finite dimensional vector space, W , we have W ∼= W ∗. But this isomorphism is not “natural”
in a some technical sense I won’t get into (the isomorphism is basis dependent – we usually show W ∼= W ∗ by
choosing a basis for W and relating it to a dual basis for W ∗). It turns out that picking an isomorphism between W
and W ∗ is almost the same thing as choosing an inner product on W . For a finite dimensional real inner product
space, its inner product can allow us (with some care) to treat vectors in our space and its dual as interchangeable.
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