Name:

Be sure to show your work!

- 1. (20 points) Divides and Induction
- (a) Give a careful definition of the set of odd integers using set builder notation.

 $\mathbb{O} =$

(b) Suppose the $a, b, c \in \mathbb{Z}$ and that a divides b and a divides c. Prove that a divides b + c.

(c) Using induction, prove that for any positive integer n, we have $\sum_{i=1}^{n} (2i-1) = n^2$.

	,	,			
2	(20)	nointe	Contradiction	and	Stratom
∠.	120	pomb	/ Commadiction	anu	Dualegy

(a) Suppose I want to prove the statement: "Given any $m \in \mathbb{Z}$, there exists a unique $n \in \mathbb{Z}$ such that $m < \frac{n}{2} < m + 1$." In addition, suppose we have already shown existence. Sketch the beginning and end of the next part of the proof.

(b) Prove there is no smallest integer.

(c) Prove $\sqrt{2}$ is irrational.

- 3. (20 points) Sequences
- (a) Give the definition of $\langle a_n \rangle_{n=0}^{\infty} \to L$.

(b) Show $\langle n^2 + 1 \rangle_{n=0}^{\infty}$ is bounded below but not above.

(c) Prove that $\left\langle \frac{n+5}{3n^2+9n-1} \right\rangle_{n=1}^{\infty} \to 0.$

The following calculation might be helpful:

$$\frac{n+5}{3n^2+9n-1} \leq \frac{n+5n}{3n^2+9n-1} < \frac{6n}{3n^2-1} \leq \frac{6n}{3n^2-n^2} = \frac{6n}{2n^2} = \frac{3}{n}$$

- 4. (20 points) Sets!
- (a) Let \mathcal{A} be a set of subsets of \mathbb{R} (i.e., $\mathcal{A} \subseteq \mathcal{P}(\mathbb{R})$). Define what " $x \in \bigcup \mathcal{A}$ " means.

(b) Let $A = \{12n \mid n \in \mathbb{Z}\}$ and $B = \{x \mid x \in \mathbb{Z} \text{ and } x \text{ is divisible by } 20\}.$ Also, let $C = \{n \mid \text{ there exists some } k \in \mathbb{Z} \text{ such that } n = 2k\}.$ Prove that $A \cup B \subseteq C$.

(c) Let $f: A \to B$ and $T_1, T_2 \subseteq B$. Prove that $f^{-1}(T_1 \cap T_2) = f^{-1}(T_1) \cap f^{-1}(T_2)$.

5.	(20)	points)	Functions

(a) Let $f:A\to B$. Define what it means for f to be invertible.

(b) Suppose $f:A\to B$ and $g:B\to C$ are onto. Show that $g\circ f:A\to C$ is onto.

(c) Consider $f: \mathbb{Z} \to \mathbb{R}$ defined by f(n) = 5n - 2. Prove that f is one-to-one but not onto.